Skip to main content
Log in

Integrated shallow seismic imaging of a settlement located in a historical landslide area

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Uzungöl settlement and Lake Uzungöl are located in the south of Çaykara, Trabzon, Eastern Black Sea region, and are an important tourist destination in Turkey, with natural beauty and rich flora. However, the settlement and the lake were formed by a historical landslide that covered the front of the Haldizen stream. Residential buildings, tourist facilities, transportation routes, and agricultural activities are located on ground that consists of the material that accumulated from the landslide. In this study, a geophysical investigation using integrated shallow seismic methods was carried out in Uzungöl settlement to provide detailed scientific imaging data on the structure of the subsurface, the physical properties of the soil and rock, the bedrock topography, and the vertical and lateral variation in the landslide deposits. For this purpose, seismic refraction and active and passive multichannel surface wave data were collected from 16 profiles in four separate zones designated according to the agricultural activity and geomorphology of the area. In addition, an electrical resistivity tomography survey of a profile was carried out to determine the reason for low-velocity anomalies such as cavities or man-made voids appearing in P-wave velocity–depth sections and underground water content. After applying basic processes including trace killing/editing, random noise filtering of the data, and amplitude balancing to all seismic data, 2D P-wave velocity–depth sections obtained by tomographic inversion, 1D S-wave velocity–depth profiles, and 2D S-wave velocity–depth sections were generated via analysis of MASW and ReMi data. P- and S-wave velocity–depth sections generally demonstrate three main lithological units in the area: the soil (Vp = 300–600 m/s, Vs = 195–350 m/s and H = 0–2.5 m), the landslide material (Vp = 600–2400 m/s, Vs = 350–680 m/s and H = 2.5–15 m), and the bedrock (Vp > 2400 m/s, Vs > 680 m/s and H ≥ 15 m). In particular, the landslide material exhibits variable thickness from profile to profile and represents the complexity of the subsurface. However, we observed that the deposit thickness increases close to the lake. It was determined that the high seismic velocities of the landslide deposits are attributable to the densely packed deposits and the primarily dry or very poor underground water, according to electrical resistivity tomography results. Moreover, the top of the bedrock is characterized by soft rock, and the deeper part of the bedrock is harder and more compact. We believe that this information will be a useful contribution to geotechnical project development and risk mitigation in the Uzungöl area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Altundağ D (2008) Environmental changes in Holocene period in Uzungöl and its catchment area. MSc Thesis, Ankara University, Institute of Social Sciences

  • Baker GS, Schmeissner C, Steeples DW, Plumb RG (1999) Seismic reflections from depths of less than two meters. Geophys Res Lett 26:279–282

    Article  Google Scholar 

  • Belfer I, Bruner I, Keydar S, Kravtsov A, Landa E (1998) Detection of shallow objects using refracted and diffracted seismic waves. J Appl Geophys 38:155–168

    Article  Google Scholar 

  • Benjumea B, Gabàs A, Bellmunt F, Macau A, Figueras S, Vilà M (2011) Geophysical Techniques Improving Geological Mapping in Urban Areas at Two Different Scales, Near Surface 2011 - 17th EAGE European Meeting of Environmental and Engineering Geophysics, 12–14 September 2011, Leicester, United Kingdom

  • Bulut (1989) Investigation of Çambaşı (Trabzon-Çaykara) dam and Uzungöl hydroelectric power plant locations in terms of engineering geology, Ph.D thesis, Karadeniz Technical University Institute of Natural Sciences, Trabzon-Turkey (in Turkish)

  • Cardarelli E, Cercato M, Cerreto A, Di Filippo G (2010) Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys Prospect 58(4):685–695. https://doi.org/10.1111/j.1365-2478.2009.00854.x

    Article  Google Scholar 

  • Dal Moro G, Pipan M, Forte E, Finetti I (2003) Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments. In: 2003 SEG Annual Meeting, 2003. Society of Exploration Geophysicists

  • Dal Moro G, Pipan M (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61:39–55

    Article  Google Scholar 

  • Kanli AI, Tildy P, Pronay Z, Pinar A, Hemann L (2006) Vs30 mapping and soil classification for seismic site effect evaluation in dinar region. Geophys J Int SWTurkey 165:223–235

    Article  Google Scholar 

  • Kritikakis GS, Vafidis A (2011) Different alternatives of surface waves data inversion. Applications on environmental and geotechnical case studies, 6th congress of the Balkan geophysical society, 3–6 October 2011. Budapest, Hungary

  • Loke MH, Barker RD (1995) Least -squares deconvolution of apparent resistivity pseudo-sections. Geophysics 60:1682–1690

    Article  Google Scholar 

  • Louie JN (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seismol Soc Am 91(2):347–364. https://doi.org/10.1785/0120000098

    Article  Google Scholar 

  • Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2008) Rayleigh-wave dispersive energy imaging by high-resolution linear radon transform. Pure Appl Geophys 165(5):903–922

    Article  Google Scholar 

  • Mohamed AME, Abu El Ata ASA, Abdel Azim F, Taha MA (2013) Site-specific shear wave velocity investigation for geotechnical engineering applications using seismic refraction and 2D multi-channel analysis of surface waves. NRIAG J Astron Geophys 2(1):88–101. https://doi.org/10.1016/j.nrjag.2013.06.012

    Article  Google Scholar 

  • Palmer D (1986) Refraction seismics: in: Helbig K. and Treitel S. (eds): handbook of geophysical exploration. Section I. Seismic exploration, Volume 13, Geophysical Press, London-Amsterdam, pp. 1–265

  • Park CB, Miller RD, Xia J (1998) Imaging dispersion curves of surface waves on multi-channel record. SEG Expanded Abstracts 1:1377–1380

    Google Scholar 

  • Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808. https://doi.org/10.1190/1.1444590

    Article  Google Scholar 

  • Park C, Miller R (2008) Roadside passive multichannel analysis of surface waves (MASW). J Environ Eng Geophys 13:1–11

    Article  Google Scholar 

  • Pullammanappallil SK, Louie JN (1994) A generalized simulated-annealing optimization for inversion of first-arrival times. Bull Seismol Soc Am 84(5):1397–1409

    Google Scholar 

  • Sastry RG, Mondal SK (2012) Geophysical characterization of the Salna sinking zone, Garhwal Himalaya, India. Surv Geophys 34(1):89–119. https://doi.org/10.1007/s10712-012-9206-y

    Article  Google Scholar 

  • Sheehan JR, Doll WE, Madell WE (2005) An evaluation of methods and available software for seismic refraction tomography analysis. J Environ Eng Geophys 10:21–24

    Article  Google Scholar 

  • Steeples DW, Miller RD (1998) Avoiding pitfalls in shallow seismic reflection surveys. Geophysics 63:1213–1224

    Article  Google Scholar 

  • Steeples DW (2000) A review of shallow seismic methods. Ann Geofis 43:1021–1044

    Google Scholar 

  • The State Hydraulic Works of Turkey (1982) Engineering geology report of the project of-Solaklı – Uzungöl unit, Trabzon-Turkey ( in Turkish)

  • Verep B, Şahin C, Çiloğlu E, İmamoğlu HO (2010) Uzungöl’ün İklimi ve Çevresel Sorunları Üzerine Bir Çalışma / A Study on The Climate and Environmental Problems of Uzungöl. Atatürk Üniversitesi Ziraat Fakültesi Derg 33(4). http://dergipark.gov.tr/ataunizfd/40834 (accessed 5 January 2018)

  • Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64:691–700

    Article  Google Scholar 

  • Xia J, Miller RD, Park CB, Ivanov J (2000) Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique. p. 20–24. In Proceedings of the symposium on the application of geophysics to engineering and environmental problems, Arlington

  • Xia J, Miller RD, Park CB, Ivanov J, Tian G, Chen C (2004) Utilization of high-frequency Rayleigh waves in near-surface geophysics. Lead Edge 23(8):753–759

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Foundation of Karadeniz Technical University (Project No. 11522). We would like to thank dear Satish Pullammanappallil, PhD, Chief Scientist of Optim, for his contributions. Some parts of this study were presented at ICEG-SEG 2015 (honored with best student paper award) and 77th EAGE Conference & Exhibition 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Senkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanlı Senkaya, G., Senkaya, M., Karsli, H. et al. Integrated shallow seismic imaging of a settlement located in a historical landslide area. Bull Eng Geol Environ 79, 1781–1796 (2020). https://doi.org/10.1007/s10064-019-01612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01612-0

Keywords

Navigation