Spatiotemporal evolution of the El Biar landslide (Algiers): new field observation data constrained by ground-penetrating radar investigations

Abstract

A better understanding of the spatiotemporal evolution of landslides in urban zones is a key factor in assessing the risk of future slides within these areas. The El Biar landslide, located around the center of Algiers city, is one of the most important landslides in the region. It occurs mostly within a high strategic zone between schools, embassies and security buildings, thus causing a real risk for the population since it covers an area of 40 ha. The detection of various landslide-breaking surfaces leads to a better understanding of the mechanism of the spatiotemporal evolution of ground movement. In this work, we have combined two methods in order to provide strong evidence of its spatiotemporal evolution. The first method is based on field investigations to map old scarps related to the activity of the landslide. To better constrain our field investigations, most recent field observations were complemented by a second geophysical method using ground-penetrating radar with two different antennae which propagate under the two frequencies of 30 MHz and 100 MHz. As a result, we have reviewed this sliding area in detail and presented a new map of the whole affected zone. We have also delimited the affected zone by drawing a new map of the landslide. Combining field observations and the geophysical survey, we have highlighted the main discontinuity surfaces that lead us to suggest plausible realistic scenarios concerning the landslide’s evolution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Agard M (1948) Les glissements et éboulements des quartiers Saint-Raphaël et Telemly à Alger. Ann Ponts Chaussées 465–480

  2. Aymé (1964) Cartes géologiques de Chéraga et d’Alger. Bull Serv Cart Géol Alg, scale: 1/50 000

  3. Azimi D (1996) Quelques aspects de la prévision des mouvements de terrains. Rev Fr Géotech 76:63–75

    Article  Google Scholar 

  4. Bogoslovsky VA, Ogilvy AA (1977) Application of geophysical methods for the investigation of landslides. Geophysics 42:562–571

    Article  Google Scholar 

  5. Borecka A, Herzig J, Durjasz-Rybacka M (2015) Ground penetrating radar investigations of landslides: a case study in a landslide in Radziszów. Stud Geotech Mech 37:11–18

    Article  Google Scholar 

  6. Bougdal R (2007) Urbanisation et mouvements de versants dans le contexte géologique et géotechnique des bassins néogènes d’Algérie du Nord. Thèse doctorat. USTHB. Algeria

  7. Bougdal R, Larriere A, Pincent B, Panet M, Bentabet A (2013) Les glissements de terrains du quartier Bélouizdad, Constantine. Algérie Bull Eng Geol Env. https://doi.org/10.1007/s10064-013-0465-8

    Article  Google Scholar 

  8. Bouhadad Y, Benhamouche A, Bourenane H, Ait Ouali A, Chikh M, Guessoum N (2010) The Laalam (Algeria) damage landslide triggered by a moderate earthquake (mw = 5.2). Nat Hazards. https://doi.org/10.1007/s11069-009-9466-0

    Article  Google Scholar 

  9. Boullé P, Vrolijks L, Palm E (1997) Vulnerability reduction for sustainable urban development. J Conting Crisis Manag 5:179–188

    Article  Google Scholar 

  10. Bournane H, Bouhadad Y, Guettouche M-S, Braham M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-014-0616-6

    Article  Google Scholar 

  11. Bouzid R (1985) Contribution à l’étude des glissements de terrain, cas du glissement d’El Biar. Thèse de Doctorat de 3ème cycle. Ecole Nationale Polytechnique, Algeria

  12. Cheikh Lounis G (2011) Analyse et cartographie des risques naturels dans l’algérois. Thèse doctorat. USTHB. Algeria

  13. Crozier M. J, Glade T (2012) Landslide hazard and risk: issues, concepts, and approach. In: Glade, T., Anderson, M., Crozier, M.J. (Eds.), Landslide Hazard and Risk. Wiley, Chichester, UK, pp. 1–40

    Google Scholar 

  14. Dervieux F (1948) Problèmes particuliers de mécanique des sols en Algérie. I.T.B.T.P. Sols Fond 3:51–58

    Google Scholar 

  15. Djerbal L, Melbouci B (2012) Le glissement de terrain d’Aïn-El- Hammam : causes et évolution. Bull Eng Geol Environ 71(3):587–597

    Article  Google Scholar 

  16. Drouhin R, Gauthier H, Dervieux H (1948) Stabilité et déformation du sol. Travaux, pp. 327–332

  17. Glangeaud L (1932) Etude géologique de la région littorale de la province d’Alger. Thèse Doct. Sci., Paris.

  18. Glangeaud L, Aymé A, Matauer M (1952) Histoire géologique de la province d’Alger, XIX Cong. Géol. Inter., Mono gr. Région Algérie, 1er série, n°25

  19. Guirous L, Djerbal L, Alimrina N, Melbouci B, Bahar R (2013) Caractérisation des glissements de terrain de la région de Tizi-Ouzou (Algérie). First International Conference on Landslides Risk, Tabarka, Tunisie, 14–16 mars, pp 117–127

  20. Guirous L, Dubois L, Melbouci B (2014) Contribution à l’étude du mouvement de terrain de la ville de Tigzirt (Algérie). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-014-0624-6

    Article  Google Scholar 

  21. Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448

    Article  Google Scholar 

  22. Hallal N, Dubois L, Bougdal R, Djouder F (2017) Instabilités gravitaires dans la région de Béjaïa (Algérie): Inventaire et appréciation de l’importance relative des différents paramètres conduisant au déclenchement, au maintien ou à l’activation des instabilités. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-017-1050-3

    Article  Google Scholar 

  23. Harbi A, Maouche S, Ayadi A, Benouar D, Panza G-F, Benhallou H (2004) Seismicity and tectonic structures in the site of Algiers and its surroundings: a step towards microzonation. Pure Appl Geophys 161:949–967

    Article  Google Scholar 

  24. Huang Y, Lingkan Y, Chenwen G (2013) Distribution law of landslides triggered by earthquake based on cellular automata. J SouthWest JiaoTong Univ. https://doi.org/10.3969/j.issn.0258-2724.2013.04.004

  25. Irving JD, Knight RJ (2003) Removal of wavelet dispersion from ground-penetrating radar data. Geophysics 68:960–970. https://doi.org/10.1190/1.1581068

    Article  Google Scholar 

  26. Koukouvelas A, Litoseliti K, Nikolakopoulos V, Zygouri (2015) Earthquake triggered rock falls and their role in the development of a rock slope: the case of Skolis Mountain, Greece. Eng Geol 191(29):71–85

    Article  Google Scholar 

  27. Laribi A, Walstra J, Ougrine M, Seridi A, Dechemi N (2015) Use of digital photogrammetry for the study of unstable slopes in urban areas: Case study of the El Biar landslide, Algiers

  28. Maouche S (2010) Tectonique active et géodynamique le long de l’Atlas Tellien: Etude des soulèvements côtiers., USTHB, Algeria

  29. Maouche S, Meghraoui M, Morhange C et al (2011) Active coastal thrusting and folding, and uplift rate of the Sahel anticline and Zemmouri earthquake area (tell atlas, Algeria). Tectonophysics 509:69–80. https://doi.org/10.1016/j.tecto.2011.06.003

    Article  Google Scholar 

  30. Mansour MF, Morgenstern NR, Martin CD (2011) Expected damage from displacement of slow-moving slides. Landslides 8:117–131

    Article  Google Scholar 

  31. Mc Cann DM, Forster A (1990) Reconnaissance geophysical methods in landslide investigations. Eng Geol 29:59–78

    Article  Google Scholar 

  32. Meghraoui M, Maouche S, Chemaa B, Cakir Z, Aoudia A, Harbi A, Alasset PJ, Ayadi A, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the mw = 6.8 Zemmouri (Algeria) earthquake of 21 may, 2003. Geophys Res Lett 31(19)

  33. Saadallah A (1981) Le massif cristallophyllien d’El Djazair (Algérie), évolution d’un charriage à vergence Nord dans les Interniez des Maghrébides. Thèse 3 éme Cycle. I.S.T-USTHB. Algérie

  34. Saadallah K (1984) Tectonique globale et active en Algérie alpine septentrionale. Conférence Internationale sur la microzonation sismique. Chlef. 10–12/11/1984

  35. Sandmeier K. J (2008) ReflexW (version 5.0) program for processing and interpretation of reflection and transmission data. Karlsruhe, Germany, Sandmeier software

  36. Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93(1–2):89–103

    Article  Google Scholar 

  37. Sebaï A, Bernard P (2008) Contribution à la connaissance de la sismicité d’Alger et de ses alentours au XVIII siècle, extraite des archives françaises. C R Geosci 340:495–512. https://doi.org/10.1016/j.crte.2008.05.001

    Article  Google Scholar 

  38. Sol Expert International (S.E.I.) (1978) Mission 1, Bilan des phénomènes depuis 1973

  39. Sol Expert International (S.E.I.) (1981) Rapport Final, Written by Evers G., P fister P

  40. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44:998–1001. https://doi.org/10.1109/78.492555

    Article  Google Scholar 

  41. Tzanis A (2010) matGPR Release 2: A freeware MATLAB® package for the analysis & interpretation of common and single offset GPR data. FastTimes 15(1):17–43

    Google Scholar 

  42. Tzanis A (2016) MATGPR Release 3.1, Manual and Technical Reference, Department of Geophysics, University of Athens Panepistimiopoli, Zografou 15784, Greece, atzanis@geol.uoa.gr

  43. Walstra J, Dixon N, Chandler J-H (2007) Historical aerial photographs for landslide assessment: two case histories. Q J Eng Geol Hydrogeol 40:315–332

    Article  Google Scholar 

  44. Yelles-Chaouche A-K, Boudiaf A, Djellit H, Bracène R (2006) La tectonique active de la région nord algérienne. C R Géosci 338:126–139

    Article  Google Scholar 

  45. Zajc M, Pogacnik Z, Gosar A (2014) Ground penetrating radar and structural geological mapping investigation of karst and tectonic features in flyschoid rocks as geological hazard for exploitation. Int J Rock Mech Min Sci 67:78–87

    Article  Google Scholar 

  46. Zhou Q, Jiang Y-f, Wu G, Chen G-g (eds) (2014) Distribution of coseismic landslides in Lushan earthquake and discussion on related problems. Seismol Geol 36(2):344–357

Download references

Acknowledgments

This research was supported by the CRAAG research center. We would like to thank the two anonymous reviewers for their thoughtful comments and useful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nassim Hallal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hallal, N., Yelles Chaouche, A., Hamai, L. et al. Spatiotemporal evolution of the El Biar landslide (Algiers): new field observation data constrained by ground-penetrating radar investigations. Bull Eng Geol Environ 78, 5653–5670 (2019). https://doi.org/10.1007/s10064-019-01492-4

Download citation

Keywords

  • El Biar landslide
  • Mapping
  • GPR
  • Spatiotemporal evolution