Skip to main content

Advertisement

Log in

Spatial prediction of landslide-susceptible zones in El-Qaá area, Egypt, using an integrated approach based on GIS statistical analysis

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The spatial prediction of landslide susceptibility locations is a crucial task to support risk management and development plans in mountainous areas, such as El-Qaá area. The study aims to delineate landslide-susceptible zones that can cause enormous damage to property, infrastructure, and loss of life. An innovative integrated approach using remote sensing, geographic information systems, and geophysical techniques was used in the current work to evaluate landslide susceptibility locations. Magnetic data were supported by information derived from geologic, geomorphologic, topographic, and seismic data to reveal the landslides-prone zones. Several factors contributing to landslide susceptibility in El-Qaá area were determined, such as distance to faults, lithology, stream power index, slope, density of earthquake events, distance to epicenters, tilt derivative of magnetic data, distance to drainages, aspect, and topographic wetness index. A unique landslide susceptibility model (LSM) was developed in this study by integration all the spatial data that represent the contributing factors. The bivariate statistical index method was constructed to assign logic ranks and weights for the causative factors and their classes representing their realistic relations with landslide susceptibility in El-Qaá area. The landslide susceptibility map classifies El-Qaá area into five relative susceptibility zones: very high, high, moderate, low, and very low. The very high- and high-susceptibility zones are distributed in the eastern side of El-Qaá area where structurally controlled channels, steep topography to downhill lands, and Precambrian basement rocks are located. The resulting susceptibility map was tested and validated using the landslide locations that were delineated from field survey and satellite images at high resolution. The integrated methodology shows a more realistic landslide susceptibility map and adds a powerful tool to design a fruitful management plan in mountainous areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abu El-Ata AS (1988) The relation between the local tectonics of Egypt and the plate tectonics of the surrounding regions using geophysical and geological data. Proceeding of the 6th Annual Meeting of Egyptian General Petroleum Corporation, Cairo, pp 92–112

  • Abuzied SM (2016) Groundwater potential zone assessment in Wadi Watir area, Egypt using radar data and GIS. Arab J Geosci 9(7):1–20. https://doi.org/10.1007/s12517-016-2519-2

    Article  Google Scholar 

  • Abuzied SM and Alrefaee HM (2017) Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-Qaà Plain area, Egypt. Hydrogeol J 1–22. https://doi.org/10.1007/s10040-017-1603-3

  • Abuzied SM, Ibrahim SK, Kaiser MF, Saleem TA (2016a) Geospatial susceptibility mapping of earthquake-induced landslides in Nuweiba area, gulf of Aqaba, Egypt. J Mt Sci 13(7):1286–1303. https://doi.org/10.1007/s11629-015-3441-x

    Article  Google Scholar 

  • Abuzied SM, Ibrahim SK, Kaiser MF, Seleem TA (2016b) Application of remote sensing and spatial data integrations for mapping porphyry copper zones in Nuweiba area, Egypt. Int J Signal Process Syst 4(2):102–108. https://doi.org/10.12720/ijsps.4.2.102-108

    Article  Google Scholar 

  • Abuzied SM, Yuan M, Ibrahim SK, Kaiser MF, Saleem TA (2016c) Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J Arid Environ 133:54–72. https://doi.org/10.1016/j.jaridenv.2016.06.004

    Article  Google Scholar 

  • Abuzied SM, Yuan M, Ibrahim SK, Kaiser MF, Seleem TA (2016d) Delineation of groundwater potential zones in Nuweiba area (Egypt) using remote sensing and GIS techniques. Int J Signal Process Syst 4(2):109–117. https://doi.org/10.12720/ijsps.4.2.109-117

    Article  Google Scholar 

  • Ahmed M, Sauck W, Sultan M, Yan E, Soliman F, Rashed M (2014) Geophysical constraints on the Hydrogeologic and structural settings of the Gulf of Suez rift-related basins: case study from the El Qaa plain, Sinai, Egypt. Surv Geophys 35:415–430. https://doi.org/10.1007/s10712-013-9259-6

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44. https://doi.org/10.1007/s100640050066

    Article  Google Scholar 

  • Azab AA, EL-Khadargy AA (2013) 2.5-D gravity/magnetic model studies in Sahl El Qaa area, southwestern Sinai, Egypt. Pure Appl Geophys 170:2207–222 9. https://doi.org/10.1007/s00024-013-0650-5

    Article  Google Scholar 

  • Baban SM, Sant KJ (2005) Mapping landslide susceptibility for the Caribbean island of Tobago using GIS, multi-criteria evaluation techniques with a varied weighted approach. Caribbean J Earth Sci 38:11–20

    Google Scholar 

  • Bakhshipour Z, Huat BK, Ibrahim S, Asadi A, Kura NM (2013) Application of geophysical techniques for 3D Geohazard mapping to delineate cavities and potential sinkholes in the northern part of Kuala Lumpur, Malaysia. Sci World J 2013:1–11. https://doi.org/10.1155/2013/629476

    Article  Google Scholar 

  • Baranov V, Naudy H (1964) Numerical calculation of the formula of reduction to the magnetic pole. Geophys J 29(1):67–79. https://doi.org/10.1190/1.1439334

    Article  Google Scholar 

  • Benson AK, Floyd AR (2000) Application of gravity and magnetic methods to assess geological hazards and natural resource potential in the Mosida Hills, Utah County, Utah. Geophysics 65(5):1514–1526

    Article  Google Scholar 

  • Bogoslovsky VA, Ogilvy AA (1977) Geophysical methods for the investigation of landslides. Geophys J 42(3):562–571. https://doi.org/10.1190/1.1440727

    Article  Google Scholar 

  • Bonham-Carter GF, Agterberg FP (1999) Arc-WofE: a GIS tool for statistical integration of mineral exploration datasets. Bull Int Stat Inst 52:497–500

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. Proceeding of the 4th International Symposium on Landslides, 16–21 September, Toronto, Ontario, Canada (Canadian Geotechnical Society, Toronto, Ontario, Canada), pp 307–324

  • Bughi S, Aleotti P, Bruschi R, Andrei G, Milani G, Scarpelli G (1996) Slow movements of slopes interfering with pipelines: modelling vs. monitoring. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16(5):427–445. https://doi.org/10.1002/esp.3290160505

    Article  Google Scholar 

  • Chen Z, Wang J (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada. Nat Hazards 42(1):75–89. https://doi.org/10.1016/j.jappgeo.2005.09.001

    Article  Google Scholar 

  • Colletta BP, Le Q, Letouzey J, Moretti I (1988) Longitudinal variation of Suez rift structure (Egypt). Tectonophysics 153:221–233. https://doi.org/10.1016/0040-1951(88)90017-0

    Article  Google Scholar 

  • Conforti M, Aucelli PP, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (northern Calabria, Italy). Nat Hazards 56(3):881–898. https://doi.org/10.1007/s11069-010-9598-2

    Article  Google Scholar 

  • Conoco (1982) Getchell mine pit water volumes. Inter-office Communication from J.T, McDonough

    Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63(2):397–406. https://doi.org/10.1007/s12665-010-0724-y

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board, US National Research Council. Special Report 247, Washington, DC, Chapter 3, pp 36–75

  • Dames and Moore (1985) Sinai Development Study, phase 1, Final Report, Water Supplies and Coast, Vol. Report submitted to the Advisory Committee for Reconstruction, Ministry of Development, Cairo 147p

  • Dayan U, Abramski R (1983) Heavy rain in the Middle East related to unusual jet stream properties. Bull Am Meteorolog Soc 64(10):1138–1140

    Article  Google Scholar 

  • De Vita P, Agrello D, Ambrosino F (2006) Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding mount Somma-Vesuvius: application of geophysical surveys for soil thickness mapping. J Appl Geophys 59(2):126–139. https://doi.org/10.1016/j.jappgeo.2005.09.001

    Article  Google Scholar 

  • Dennis SW (1984) The tectonic framework of petroleum occurrence in the Western Desert of Egypt. EGPC 7th exploration seminar Cairo

  • Dobrin MB (1976) Introduction to geophysical prospecting, 3rd edn. Mc Graw Hill Book Company, New York 630 p

    Google Scholar 

  • Dobrin MB, Savit CH (1988) Introduction to geophysical prospecting, 4th edn. Mc Graw Hill Book Company, New York, 867p

    Google Scholar 

  • El-Nahry AH, Saleh AM (2004) Influence of seasonal flashfloods on terrain and soils of El-Qaà plain, South Sinai, Egypt. Egypt J Soil Sci 44(4):489

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (west Black Sea region, Turkey). Eng Geol 75(3):229–250. https://doi.org/10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Evans SG, Hungr O (1993) The assessment of rock fall hazards at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Farooq M, Park S, Song YS, Kim JH, Tariq M, Abraham AA (2012) Subsurface cavity detection in a karst environment using electrical resistivity (er): a case study from Yongweolri, South Korea. Earth Sci Res J 16(1):75–82

    Google Scholar 

  • Fasani GB, Bozzano F, Cardarelli E, Cercato M (2013) Underground cavity investigation within the city of Rome (Italy): a multi-disciplinary approach combining geological and geophysical data. Eng Geol 152:109–121. https://doi.org/10.1016/j.enggeo.2012.10.006

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65(3):2105–2128. https://doi.org/10.1007/s11069-012-0463-3

    Article  Google Scholar 

  • Forte F, Strobl RO, Pennetta L (2006) A methodology using GIS, aerial photos and remote sensing for loss estimation and flood vulnerability analysis in the Supersano-Ruffano-Nociglia graben, southern Italy. Environ Geol 50(4):581–594. https://doi.org/10.1007/s00254-006-0234-0

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94(3–4):268–289

    Article  Google Scholar 

  • Gemitzi A, Falalakis G, Eskioglou P, Petalas C (2011) Evaluating landslide susceptibility using environmental factors, fuzzy membership functions and GIS. Global NEST J 13(1):28–40

    Google Scholar 

  • Geological Survey of Israel (1980) The aeromagnetic reduced to the North Pole map of Sinai Peninsula

  • Geosoft (2008) Oasis Montaj software package. Mapping and Processing system, Ontario, Canada

  • Gilboa Y (1980) Post Eocene clastics distribution along the El-Qaà plain, southern Sinai. J Earth Sci 29:197–206

    Google Scholar 

  • Gorsevski PV, Gessler P, Foltz RB (2000) Spatial prediction of landslide hazard using discriminant analysis and GIS. Conference and Workshop: applications for the 21st Century, Denver, Colorado, September 25–27, 2000

  • Griffin WR (1949) Residual gravity in theory and practice. Geophysics 14(1):39–56

    Article  Google Scholar 

  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in Central Italy. Earth Planet Sci Lett 195(3):169–183

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1–2):42–66

    Article  Google Scholar 

  • Hadji R, Errahmane Boumazbeur A, Limani Y, Baghem M, Chouabi AE, Demdoum A (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quatern Int 302:224–237. https://doi.org/10.1016/j.quaint.2012.11.027

    Article  Google Scholar 

  • Hammad FA (1980) Geomorphological and hydrological aspects of Sinai Peninsula. Annal Geol Surv Egypt X:807–817

    Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43(2):245–256. https://doi.org/10.1007/s11069-006-9104-z

    Article  Google Scholar 

  • Hunter JA, Burns RA, Good RL, Pullan SE, Pugin A, Crow H (2010) Near-surface geophysical techniques for geohazards investigations: some Canadian examples. Leading Edge 29(8):964–977. https://doi.org/10.1190/1.3480011

    Article  Google Scholar 

  • Ilanloo M (2012) Mass movements hazard zonation with analyzing hierarchy process (AHP) method (case study: Varenge Roud basin). Int J Agric Crop Sci 4(16):1159–1165

    Google Scholar 

  • Kanungo DP, Sarkar S, Sharma S (2011) Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Nat Hazards 59(3):1491–1512. https://doi.org/10.1007/s11069-011-9847-z

    Article  Google Scholar 

  • Kim JH, Yi MJ, Hwang SH, Song Y, Cho SJ, Synn JH (2007) Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city. J Geophys Eng 4(3):332–347. https://doi.org/10.1088/1742-2132/4/3/S12

    Article  Google Scholar 

  • Kornejady A, Kohzad H, Sarparast M, Khosravi G, Mombeini M (2014) Performance assessment of two “LNRF” and “AHP-area density” models in landslide susceptibility zonation. J Life Sci Biomed 4(3):169–176

    Google Scholar 

  • Lahti I, Karinen T (2010) Tilt derivative multiscale edges of magnetic data. Leading Edge 29:24–29. https://doi.org/10.1190/1.3284049

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113. https://doi.org/10.1007/s002540100310

    Article  Google Scholar 

  • Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York 381p

    Book  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Landf 29(6):687–711

    Article  Google Scholar 

  • Malehmir A, Socco LV, Bstini M, Krawczyk CM, Pfaffhuber AA, Miller RD, Maurer H, Frauenfelder R, Suto K, Bazin S, Merz K, Dahlin T (2016) Near-surface geophysical characterization of areas prone to natural hazards: a review of the current and perspective on the future. Adv Geophys 57:51–146

    Article  Google Scholar 

  • Mancini F, Ceppi C, Ritrovato G (2010) GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Nat Hazard Earth Syst Sci 10:1851–1864. https://doi.org/10.5194/nhess-10-1851-2010

    Article  Google Scholar 

  • Meshref WM (1990) Tectonic framework of Egypt. In: Said R (ed) The geology of Egypt. AA Balkema, Rotterdam, pp 113–156

    Google Scholar 

  • Miller HG, Singh V (1994) Potential field tilt a new concept for location of potential field sources. J Appl Geophys 32:213–217. https://doi.org/10.1016/0926-9851(94)90022-1

    Article  Google Scholar 

  • Mohammadi M (2008) Mass movement hazard analysis and presentation of suitable regional model using GIS (Case Study: A part of Haraz Watershed). M.Sc. Thesis, Tarbiat Modarres University International Campus, Iran, pp 80

  • Moore ID, Burch GJ (1986) Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resour Res 22(8):1350–1360. https://doi.org/10.1029/WR022i008p01350

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30

    Article  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57(2):443–452

    Article  Google Scholar 

  • Mosconi A, Rebora A, Venturino G, Bocca P (1996) Egypt-Nile Delta and North Sinai Cenozoic tectonic evolutionary model - A proposal. Extended abstract, the 58th EAGE Conference and Exhibition. https://doi.org/10.3997/2214-4609.201409027

  • Moustafa AR, Abdeen MM (1992) Structural setting of the Hammam Faraun block, eastern side of the Suez rift. J Univ Kuwait Sci 19:291–291

    Google Scholar 

  • Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Technical note temporal remote sensing data and GIS application in landslide hazard zonation of part of western Ghat, India. Int J Remote Sens 19(4). https://doi.org/10.1080/014311698215865

  • Nilsen TH, Wright RH, Vlasic TC, Spangle W (1979) Relative Slope Stability and Landuse Planning in the San Francisco Bay Region, California, U.S. Geological Survey Professional Paper 944, US Government Printing Office, Washington, DC, pp 96

  • Noweir A, EL Shishtawy A (1996) Structure setting and stratigraphy of the area east of El-Qaà plain, southwestern Sinai, Egypt. J Geol 40(1):1–22

    Google Scholar 

  • Oehler JF, Labazuy P, Lénat JF (2004) Recurrence of major flank landslides during the last 2-ma-history of Reunion Island. Bull Volcanol 66(7):585–598

    Article  Google Scholar 

  • Patton TL, Moustafa AR, Nelson RA, Abdine AS (1994) Tectonic evolution and structural setting of the Suez rift. In: Landon SM (ed) Interior rift basins, vol 59. AAPG, Memoir, pp 9–55

    Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Moezzi KD (2012) Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz watershed, Iran. In Terrigenous mass movements, Springer Berlin Heidelberg, Heidelberg, pp 23–49

    Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054. https://doi.org/10.1007/s12665-009-0245-8

    Article  Google Scholar 

  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights of evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7(2):725–742. https://doi.org/10.1007/s12517-012-0807-z

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Safaripour M, Monavari M, Zare M, Abedi Z, Gharagozlou A (2012) Flood risk assessment using GIS (case study: Golestan province, Iran). Pol J Environ Stud 21:1817–1824

    Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (ganga) valley, Himalayas. Int J Remote Sens 23(2):357–369. https://doi.org/10.1080/01431160010014260

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides 2(1):61–69. https://doi.org/10.1007/s10346-004-0039-8

    Article  Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier Publication Co-operation, Amsterdam, 377p

    Google Scholar 

  • Sankarapillai S, Aslam A (2013) Potential of GIS evaluation for mass wasting processes in mountain ranges of south west coast of India. J Earth Sci Eng 3(6):416

    Google Scholar 

  • Santangelo Á, Cardinali Á, Rossi Á, Mondini AC, Guzzetti F (2010) Remote landslide mapping using a laser rangefinder binocular and GPS. Nat Hazards Earth Syst Sci 10(12):2539

    Article  Google Scholar 

  • Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19(10):1825–1841. https://doi.org/10.1080/014311698215018

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625. https://doi.org/10.14358/PERS.70.5.617

    Article  Google Scholar 

  • Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, Cambridge 475p

    Book  Google Scholar 

  • Sherief Y (2008) Flash floods and their effects on the development in El Qaa Plain area in south Sinai, Egypt-A Study in applied geomorphology using GIS and Remote sensing. Ph.D. Dissertation, Johannes Gutenberg Universität Mainz, 255p

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27(20):4599–4620. https://doi.org/10.1080/01431160600554983

    Article  Google Scholar 

  • Sultan N and Halim MA (1988) Tectonic framework of northern Western Desert, Egypt and its effect on hydrocarbon accumulations. Proceeding of the 9th Exploration Conference (Egyptian General Petroleum Corporation Bulletin) Cairo, 2, pp 1–22

  • Sultan SA, Rahman NA, Ramadan TM, Salem SM (2013) The use of geophysical and remote sensing data analysis in the groundwater assessment of El Qaa plain, South Sinai, Egypt. Aust J Basic Appl Sci 7(1):394–400

    Google Scholar 

  • Sun WF (2009) Study of landslide hazard assessment on typical loess area in Qianhe valley, Qianyang County. Ph.D. dissertation: Chinese Academy of Geological Science, Beijing

  • Suzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey. Int J Remote Sens 19(6):1101–1114. https://doi.org/10.1080/014311698215621

    Article  Google Scholar 

  • Taramelli A, Melelli L, Pasqui M, Sorichetta A (2010) Modelling risk hurricane elements in potentially affected areas by a GIS system. Geomatics Natural Hazards Risk 1(4):349–373. https://doi.org/10.1080/19475705.2010.532972

    Article  Google Scholar 

  • Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geol Rundsch Z Allg Geol 86(2):404–414. https://doi.org/10.1007/s005310050149

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice, natural hazards 3, commission on landslides of the IAEG. UNESCO, Paris, p 63

    Google Scholar 

  • Verduzco B, Fairhead JD, Green CM, MacKenzie C (2004) New insights into magnetic derivatives for structural mapping. Leading Edge 23:116–119. https://doi.org/10.1190/1.1651454

    Article  Google Scholar 

  • Vlcko J, Wagner P, Rychlikova Z (1980) Evaluation of regional slope stability. Mineralia Slovaca 12(3):275–283

    Google Scholar 

  • Wagner A, Leite E, Olivier R (1988) Rock and debris slides risk mapping in Nepal-A user friendly PC system for risk mapping. Proceeding of the 5th Intentional Symposium of Landslide, 10–15 July, Lausanne, Switzerland (AA Balkema, Rotterdam, the Netherlands), 2, pp 1251–1258

  • Wahid A, Madden M, Khalaf F, Fathy I (2009) Land suitability scenarios for arid coastal plains using GIS modeling: southwestern Sinai coastal plain, Egypt. J Urban Environ Eng 3(2):73–83. https://doi.org/10.4090/juee.2013.v3n2

    Article  Google Scholar 

  • Wang HB, Sassa K, Xu WY (2007) Assessment of landslide susceptibility using multivariate logistic regression: a case study in southern Japan. Environ Eng Geosci 13(2):183–192. https://doi.org/10.2113/gseegeosci.13.2.183

    Article  Google Scholar 

  • Yalcin A (2005) An investigation on Ardesen (Rize) region on the basis of landslide susceptibility, KTU. Ph.D. Thesis in Turkish

  • Yin KL and Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (Ed) Proceeding of the 5th International Symposium of Landslides, Lausanne, Balkema, Rotterdam 2, pp 1269–1272

Download references

Acknowledgements

The authors wish to express their appreciation to the Editor of Bulletin of Engineering Geology and the Environment and two anonymous reviewers for constructive and fruitful criticism on an earlier draft of the manuscript. The authors thank the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS) for providing satellite images. Hamed thanks the Egyptian Ministry of Higher Education and Scientific Research for his financial support at the University of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Abuzied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuzied, S.M., Alrefaee, H.A. Spatial prediction of landslide-susceptible zones in El-Qaá area, Egypt, using an integrated approach based on GIS statistical analysis. Bull Eng Geol Environ 78, 2169–2195 (2019). https://doi.org/10.1007/s10064-018-1302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-018-1302-x

Keywords

Navigation