Domains of seismic noise response in faulted limestone (central Apennines, Italy): insights into fault-related site effects and seismic hazard

  • G. Vignaroli
  • S. Giallini
  • F. Polpetta
  • P. Sirianni
  • I. Gaudiosi
  • M. Simionato
  • R. Razzano
  • A. Pagliaroli
  • M. Moscatelli
  • M. Mancini
  • G. P. Cavinato
  • A. Avalle
Original Paper


Studying seismic response at complex geological settings is a challenge due the occurrence of site effects related to widespread faulting/fracturing characteristics of the rock masses. Fault-related site effect is always a crucial aspect of an assessment of seismic hazard, but especially in assessments of areas where urban settlements are located in the proximity of regional fault zones. In order to detail the correlation between fault properties and seismic noise response (in terms of directional amplification), we have used a multidisciplinary approach to study a pervasively faulted limestone sequence cropping out in the central Apennines (Italy). We integrated results from (1) geological and structural surveys, (2) in situ geomechanical analyses and (3) geophysical measurements (ambient noise measurements processed with the H/V technique) performed along and across a 50 m-thick, NW–SE-striking fault zone cutting through a limestone sequence. We then reconstructed the architecture of the fault zone by individualising different structural domains (a fault core and two damage zones) and, eventually, we evaluated the fracture intensity across the fault zone by correlating structural (discontinuity spacing, discontinuity pervasivity, size of lithons) and geomechanical (rebound hardness index provided by the Schmidt hammer) parameters. Ambient noise measurements documented a variability of directional amplification across the fault zone and in the surrounding undeformed rock mass, making it possible to recognise possible site effects. The results show the occurrence of a main NE–SW-trending directional amplification oriented perpendicular to the strike of dominant slip structures within the fault core, whereas minor polarisation trends are transversal-to-perpendicular to the strike of subsidiary structures within the damage zones. The results support evidence of structurally-controlled directional amplification due to the stiffness anisotropy produced by the orientation of fault-related structures. When compared with results from published studies, our dataset can be used for understanding factors (i.e. the meso-scale fault properties) leading to directional amplification within a fault zone. Accordingly, we discuss our results in terms of the seismic response of the fault zones and the mitigation of seismic hazard in areas associated to tectonic activity.


Fault core Damage zone Ambient noise measurements Directional amplification Site effects 



The authors are grateful to P. Messina (CNR-IGAG) for his continuous encouragement. This work was partly funded by the Italian Civil Protection Department of the Presidency of the Council of Ministers, in the framework of a DPC-CNR IGAG agreement (DPC funds 2015). This manuscript extensively benefitted from useful comments and advice from M. Pischiutta. The Editor (M. G. Culshaw) is kindly acknowledged for the editorial handling.

Supplementary material

10064_2018_1276_MOESM1_ESM.pdf (3.5 mb)
ESM 1 (PDF 3574 kb)


  1. Albarello D, Bosi V, Bramerini F, Lucantoni A, Naso G, Peruzza L, Rebez A, Sabetta F, Slejko D (2000) Carte di pericolosità sismica del territorio nazionale. Quaderni di Geofisica 12, Rome.
  2. Antonellini M, Aydin A (1995) Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. Am Assoc Pet Geol Bull 79:642–671Google Scholar
  3. Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14CrossRefGoogle Scholar
  4. Balsamo F, Aldega L, De Paola N, Faoro I, Storti F (2014) The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology 42:435–438. CrossRefGoogle Scholar
  5. Barani S, Massa M, Lovati S, Spallarossa D (2014) Effects of surface topography on ground shaking prediction: implications for seismic hazard analysis and recommendations for seismic design. Geophys J Int 197:1551–1565.
  6. Bard PY, Riepl-Thomas J (2000) Wave propagation in complex geological structures and their effects on strong ground motion. In: Kausel E, Manolis GD (eds) Wave motion in earthquake engineering. WIT Press, Southampton, pp 37–95Google Scholar
  7. Ben-Zion Y (1998) Properties of seismic fault zone waves and their utility for imaging low-velocity structures. J Geophys Res 103(B6):12567–12585CrossRefGoogle Scholar
  8. Ben-Zion Y, Aki K (1990) Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bull Seism Soc Am 80:971–994Google Scholar
  9. Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715CrossRefGoogle Scholar
  10. Ben-Zion Y, Peng Z, Okaya D, Seeber L, Armbruster JG, Ozer N, Michael AJ, Baris S, Aktar M (2003) A shallow fault-zone structure illuminated by trapped waves in the Karadere–Duzce branch of the North Anatolian fault, western Turkey. Geophys J Int 152:699–717CrossRefGoogle Scholar
  11. Billi A, Salvini F, Storti F (2003) The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. J Struct Geol 25:1779–1794CrossRefGoogle Scholar
  12. Billi A, Valle A, Brilli M, Faccenna C, Funiciello R (2007) Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from Central Italy. J Struct Geol 29:385–395CrossRefGoogle Scholar
  13. Bonamassa O, Vidale JE (1991) Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake. Bull Seism Soc Am 81:1945–1957Google Scholar
  14. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028CrossRefGoogle Scholar
  15. Caine JS, Bruhn RL, Forster CB (2010) Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. J Struct Geol 32:1576–1589CrossRefGoogle Scholar
  16. Calamita F, Pizzi A (1994) Recent and active extensional tectonics in the southern Umbro-Marchean Apennines (Central Italy). Mem Soc Geol Ital 48:541–548Google Scholar
  17. Calderoni G, Rovelli A, Di Giovambattista R (2010) Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: evidence for a complex fault-induced site effect. Geophys Res Lett 37:L24305. CrossRefGoogle Scholar
  18. Caserta A, Bellucci F, Cultrera G, Donati S, Marra F, Mele G, Palombo B, Rovelli A (2000) Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence. J Seismol 4:555–565CrossRefGoogle Scholar
  19. Cavinato GP, De Celles PG (1999) Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology 27:955–958CrossRefGoogle Scholar
  20. Cavinato GP, Cerisola R, Sirna M, Storoni Ridolfi S (1990) Strutture compressive pellicolari e tettonica distensiva nei Monti Ernici sud-occidentali (Appennino centrale). Mem Soc Geol Ital 45:539–553Google Scholar
  21. Cavinato GP, Parotto M, Sirna M (2012) I Monti Ernici: da peripheral bulge a orogeno. Stato dell’arte della ricerca. Rend Online Soc Geol It 23:31–44Google Scholar
  22. Cello G, Mazzoli S, Tondi E, Turco E (1997) Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics 272:43–68CrossRefGoogle Scholar
  23. Centamore E, Fumanti F, Nisio S (2002) The Central Northern Apennines geological evolution from Triassic to Neogene time. Boll Soc Geol It Spec Vol 1:181–197Google Scholar
  24. Chávez-GarcÍa FJ, Sanchez LR, Hatzfeld D (1996) Topographic site effects and HVSR. A comparison between observations and theory. Bull Seismol Soc Am 86:1559–1573Google Scholar
  25. Chester FM, Evans JP, Biegel RL (1993) Internal structure and weakening mechanisms of the San Andreas fault. J Geophys Res 98:771–786CrossRefGoogle Scholar
  26. Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of the central Apennines: a regional review. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds). J Virtual Explorer 36(11).
  27. Cox SF, Knackstedt MA, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev Econ Geol 14:1–24CrossRefGoogle Scholar
  28. Cultrera G, Rovelli A, Mele G, Azzara R, Caserta A, Marra F (2003) Azimuth-dependent amplification of weak and strong ground motions within a fault zone (Nocera Umbra, Central Italy). J Geophys Res 108(B3):2156. CrossRefGoogle Scholar
  29. Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions, 2nd edn. Wiley, New YorkGoogle Scholar
  30. Davis PM, Rubinstein JL, Liu KH, Gao SS, Knopoff L (2000) Northridge earthquake damage caused by geologic focusing of seismic waves. Science 289:1746–1750CrossRefGoogle Scholar
  31. Di Giulio G, Cara F, Rovelli A, Lombardo G, Rigano R (2009) Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. J Geophys Res 114:B10308. CrossRefGoogle Scholar
  32. Di Naccio D, Vassallo M, Di Giulio G, Amoroso S, Cantore L, Hailemikael S, Falcucci E, Gori S, Milana G (2017) Seismic amplification in a fractured rock site. The case study of San Gregorio (L’Aquila, Italy). Phys Chem Earth 98:90–106. CrossRefGoogle Scholar
  33. Evans JP, Forster CB, Goddard JV (1997) Permeabilities of fault-related rocks and implications for fault-zone hydraulic structure. J Struct Geol 19:1393–1404CrossRefGoogle Scholar
  34. Famiani D, Amoroso S, Boncio P, Bordoni P, Cantore L, Cara F, Di Giulio G, Di Naccio D, Hailemikael S, Mercuri A, Milana G, Vassallo M (2015) Noise measurements along fault zones in central Appenines. In: 6th Int INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, 19–24 April 2015, Pescina, Fucino Basin, Italy. Istituto nazionale di geofisica e vulcanologia, pp 146–149Google Scholar
  35. Fossen H (2010) Structural geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Galadini F, Galli P (2000) Active tectonics in the central Apennines (Italy)—input data for seismic hazard assessment. Nat Haz 22:225–270CrossRefGoogle Scholar
  37. Greco R, Sorriso-Valvo M (2005) Relationships between joint apparent separation, Schmidt hammer rebound value, and distance to faults, in rocky outcrops, Calabria, southern Italy. Eng Geol 78:309–320CrossRefGoogle Scholar
  38. Gruppo di Lavoro (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM del 20 marzo 2003 n. 3274, All. 1. Rapporto conclusivo per il Dipartimento della Protezione Civile, aprile 2004. Istituto Nazionale di Geofisica e Vulcanologia (INGV), Milan–Rome., 163 pp.
  39. Gruppo di Lavoro MS (2008) Indirizzi e criteri per la microzonazione sismica. In: Conferenza delle Regioni e delle Province Autonome. Dipartimento della Protezione Civile, Rome 3 Vol. and Cd-rom.Google Scholar
  40. Hadizadeh J (1994) Interaction of cataclasis and pressure solution in a low-temperature carbonate shear zone. Pure Appl Geophys 143:255–280CrossRefGoogle Scholar
  41. Hailemikael S, Lenti L, Martino S, Paciello A, Rossi D, Scarascia Mugnozza G (2016) Ground-motion amplification at the Colle di Roio ridge, central Italy: a combined effect of stratigraphy and topography. Geophys J Int 206:1–18,
  42. Hough SE, Ben-Zion Y, Leafy P (1994) Fault-zone waves observed at the Southern Joshua tree earthquake rupture zone. Bull Seismol Soc Am 84:761–767Google Scholar
  43. Igel H, Jahnke G, Ben-Zion Y (2002) Numerical simulation of fault zone trapped waves: accuracy and 3-D effects. Pure Appl Geophys 159:2067–2083CrossRefGoogle Scholar
  44. Imposa S, Coco G, Corrao M (2004) Site effects close to structural lineaments in eastern Sicily (Italy). Eng Geol 72:331–341. CrossRefGoogle Scholar
  45. ISRM (International Society for Rock Mechanics) (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Min Sci Geomech Abstr 15:319–368CrossRefGoogle Scholar
  46. Jahnke G, Igel H, Ben-Zion Y (2002) 3D calculations of fault zone guided waves in various irregular structures. Geophys J Int 151:416–426CrossRefGoogle Scholar
  47. Karabulut H, Bouchon M (2007) Spatial variability and non-linearity of strong ground motion near a fault. Geophys J Int 170:262–274. CrossRefGoogle Scholar
  48. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241Google Scholar
  49. Lavecchia G, Boncio P, Brozzetti F, Stucchi M, Leschiutta I (2002) New criteria for seismotectonic zoning in Central Italy: insights from the Umbria-Marche Apennines. Boll Soc Geol It Vol Spec 1:881–890Google Scholar
  50. Lermo J, Chávez-GarcÍa FJ (1993) Site effect evaluation using spectral ratios with only one station. Bull Seismol Soc Am 83:1574–1592Google Scholar
  51. Lewis M, Ben-Zion Y (2010) Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas fault from comprehensive analysis of near fault seismograms. Geophys J Int 183:1579–1595CrossRefGoogle Scholar
  52. Li YG, Aki K, Adams D, Hasemi A, Lee WHK (1994) Seismic guided waves trapped in the fault zone of the landers, California, earthquake of 1992. J Geophys Res 99:11705–11722CrossRefGoogle Scholar
  53. Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6:301–314. CrossRefGoogle Scholar
  54. Lovati S, Bakavoli MKH, Massa M, Ferretti G, Pacor F, Paolucci R, Haghshenas E, Kamalian M (2011) Estimation of topographical effects at Narni ridge (Central Italy): comparisons between experimental results and numerical modeling. Bull Earthq Eng 9:1987–2005CrossRefGoogle Scholar
  55. Marra F, Azzara R, Bellucci F, Caserta A, Cultrera G, Mele G, Palombo B, Rovelli A, Boschi E (2000) Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (Central Italy). J Seismol 4:543–554CrossRefGoogle Scholar
  56. Martino S, Minutolo A, Paciello A, Rovelli A, Scarascia Mugnozza G, Verrubbi V (2006) Evidence of amplification effects in fault zone related to mass jointing. Nat Hazards 39:419–449CrossRefGoogle Scholar
  57. Marzorati S, Ladina C, Falcucci E, Gori S, Saroli M, Ameri G, Galadini F (2011) Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, Central Italy). Bull Earthq Eng 9:841–868. CrossRefGoogle Scholar
  58. Massa M, Barani S, Lovati S (2014) Overview of topographic effects based on experimental observations: meaning, causes and possible interpretations. Geophys J Int 197:1537–1550. CrossRefGoogle Scholar
  59. Massoli D, Koyi HA, Barchi MR (2006) Structural evolution of a fold and thrust belt generated by multiple décollements: analogue models and natural examples from the Northern Apennines (Italy). J Struct Geol 28:185–199CrossRefGoogle Scholar
  60. Micarelli L, Benedicto A, Wibberley CAJ (2006) Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. J Struct Geol 28:1214–1227CrossRefGoogle Scholar
  61. Ministero delle Infrastrutture e dei Trasporti (2008) Norme tecniche per le costruzioni–NTC. D.M. (14 Jan 2008). Supplemento ordinario alla Gazzetta Ufficiale No 29 (4 Feb 2008)Google Scholar
  62. Mucciarelli M, Bianca M, Ditommaso R, Vona M, Gallipoli MR, Giocoli A, Piscitelli S, Rizzo E, Picozzi M (2011) Peculiar earthquake damage on a reinforced concrete building in San Gregorio (L’Aquila, Italy): site effects or building defects? Bull Earthq Eng 9:825–840. CrossRefGoogle Scholar
  63. Nakamura Y (1989) A method for dynamic characteristics estimates of subsurface using microtremor on the round surface. Railway technical research institute. Quart Rep 30:25–33Google Scholar
  64. Pace P, Domenica AD, Calamita F (2014) Summit low-angle faults in the central Apennines of Italy: younger-on-older thrusts or rotated normal faults? Constraints for defining the tectonic style of thrust belts. Tectonics 33:756–785. CrossRefGoogle Scholar
  65. Pagliaroli A, Pitilakis K, Chávez-GarcÍa FJ, Raptakis D, Apostolidis P, Ktenidou OJ, Manakou M, Lanzo G (2007) Experimental study of topographic effects using explosions and microtremors recordings. In: Proc 4th Int Conf on Earthquake Engineering (ICEGE). Paper no. 1573. Thessaloniki, GreeceGoogle Scholar
  66. Pagliaroli A, Avalle A, Falcucci E, Gori S, Galadini F (2015) Numerical and experimental evaluation of site effects at ridges characterized by complex geological setting. Bull Earthq Eng 13:2841–2865. CrossRefGoogle Scholar
  67. Panzera F, Pischiutta M, Lombardo G, Monaco C, Rovelli A (2014) Wavefield polarization in fault zones of the western flank of Mt. Etna: observations and fracture orientation modelling. Pure Appl Geophys 171:3083–3097. CrossRefGoogle Scholar
  68. Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and Apenninic arcs: kinematic relation since late Tortonian times. Mem Soc Geol Ital 45:425–451Google Scholar
  69. Peng Z, Ben-Zion Y (2004) Systematic analysis of crustal anisotropy along the Karadere–Düzce branch of the North Anatolian fault. Geophys J Int 159:253–274.
  70. Peng Z, Ben-Zion Y (2006) Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the North Anatolian fault and strong ground motion. Pure Appl Geophys 163:567–600CrossRefGoogle Scholar
  71. Pileggi D, Rossi D, Lunedei E, Albarello D (2011) Seismic characterization of rigid sites in the ITACA database by ambient vibration monitoring and geological surveys. Bull Earthq Eng 9:1839–1854. CrossRefGoogle Scholar
  72. Pischiutta M, Salvini F, Fletcher J, Rovelli A, Ben-Zion Y (2012) Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophys J Int 188:1255–1272. CrossRefGoogle Scholar
  73. Pischiutta M, Savage MK, Holt RA, Salvini F (2015) Fracture-related wavefield polarization and seismic anisotropy across the Greendale Fault. J Geophys Res Solid Earth 120:7048–7067.
  74. Pischiutta M, Rovelli A, Salvini F, Di Giulio G, Ben-Zion Y (2013) Directional resonance variations across the Pernicana fault, Mt Etna, in relation to brittle deformation fields. Geophys J Int 193:986–996. CrossRefGoogle Scholar
  75. Pischiutta M, Fondriest M, Demurtas M, Magnoni F, Di Toro G, Rovelli A (2017) Structural control on the directional amplification of seismic noise (Campo Imperatore, Central Italy). Earth Planet Sci Lett 471:10–18. CrossRefGoogle Scholar
  76. Rawling GC, Goodwin LB, Wilson JL (2001) Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 29:43–46CrossRefGoogle Scholar
  77. Rigano R, Cara F, Lombardo G, Rovelli A (2008) Evidence for ground motion polarization on fault zones of Mount Etna volcano. J Geophys Res 113:B10306. CrossRefGoogle Scholar
  78. Rovelli A, Caserta A, Marra F, Ruggiero V (2002) Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, Central Italy. Bull Seismol Soc Am 92(6):2217–2232CrossRefGoogle Scholar
  79. Salvini F (2004) Daisy 3: the structural data integrated system analyzer software. University of Roma Tre, Rome. Google Scholar
  80. Saroli M, Biasini A, Cavinato GP, Di Luzio E (2003) Geological setting of the southern sector of the Roveto Valley (central Apennines, Italy). Boll Soc Geol Ital 122:467–481Google Scholar
  81. SESAME Project, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. WP12 – Deliverable D23.12.
  82. Shipton ZK, Cowie PA (2001) Damage zone and slip-surface evolution over mm to km scales in high-porosity Navajo sandstone, Utah. J Struct Geol 23:1825–1844CrossRefGoogle Scholar
  83. Sibson RH (1977) Fault rock and fault mechanisms. J Geol Soc 133:191–213CrossRefGoogle Scholar
  84. Slejko D, Peruzza L, Rebez A (1998) The seismic hazard maps of Italy. Ann Geophys 41:183–214Google Scholar
  85. Spudich P, Olsen KB (2001) Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in Central California. Geophys Res Lett 28(13):2533–2536CrossRefGoogle Scholar
  86. Storti F, Billi A, Salvini F (2003) Particle size distributions in natural carbonate fault rocks: insights for non-self similar cataclasis. Earth Planet Sci Lett 206:173–186CrossRefGoogle Scholar
  87. Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003–2009) for the Italian building code. Bull Seismol Soc Am 101:1885–1911. CrossRefGoogle Scholar
  88. Vignaroli G, Urru G, Rossetti F, Belardi G, Piaggi L (2016) Tectonic structures and commercial compartments in active quarrying: a case history from northern Italy. Bull Eng Geol Environ 76(2):477–496. CrossRefGoogle Scholar
  89. Wise DU, Funiciello R, Parotto M, Salvini F (1985) Topographic lineament swarms: clues to their origin from domain analysis of Italy. Geol Soc Am Bull 96:952–967CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Vignaroli
    • 1
  • S. Giallini
    • 1
    • 2
  • F. Polpetta
    • 1
    • 3
  • P. Sirianni
    • 1
  • I. Gaudiosi
    • 1
  • M. Simionato
    • 1
  • R. Razzano
    • 1
  • A. Pagliaroli
    • 2
  • M. Moscatelli
    • 1
  • M. Mancini
    • 1
  • G. P. Cavinato
    • 1
  • A. Avalle
    • 4
  1. 1.Istituto di Geologia Ambientale e Geoingegneria (IGAG)Consiglio Nazionale delle Ricerche (CNR)RomeItaly
  2. 2.Dipartimento di Ingegneria e GeologiaUniversità degli Studi “G. d’Annunzio” di Chieti PescaraPescaraItaly
  3. 3.Dipartimento di Scienze della TerraUniversità di Roma “Sapienza”RomeItaly
  4. 4.Università degli Studi Roma TreRomeItaly

Personalised recommendations