Skip to main content

Advertisement

Log in

Analogy between grid-based modeling of landslide and avalanche using GIS with surface flow analysis

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Mountainous areas with steep slopes are vulnerable to landslide and often to avalanche according to the climate condition. In the rainy season, heavy rainfall causes landslides, and avalanche can be a serious threat to mountainous areas in winter. However, avalanche has not been emphasized relatively as compared with landslides in some nations like Korea. This paper estimates the landslide and avalanche hazard of the mountainous area with distinct seasons such as Provo Canyon in Utah and Seorak Mountain in Korea. To predict susceptibility of landslides and avalanches, several geomorphological factors were considered. These predictive factors were derived from digital elevation map, and the grid-based modeling was applied for landslide and avalanche susceptibility mapping within a geographical information system (GIS). To simulate debris flow and avalanche paths from the high potential areas, GIS-based surface flow analysis was used. As a result, this study provides information about ares prone to natural hazards, and it can be useful ancillary data for people attempting to avoid potentially hazardous areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihoodfrequency ratio and weighted linear combination models. Environ Geol 54:1127–1143. doi:10.1007/s00254-007-0882-8

    Article  Google Scholar 

  • American Avalanche Association (2003) The avalanche review. A publication of the American Avalanche Association 22

  • Ancey C (2013) Snow avalanches. In: Schrefler B, Delage P (eds) Environmental Geomechanics. Wiley, Hoboken. doi:10.1002/9781118619834.ch2

    Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan. Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Environ Geol 81:432–445. doi:10.1016/j.enggeo.2005.08.004

    Article  Google Scholar 

  • Aydın A, Bühler Y, Christen M, Gürer I (2014) Avalanche situation in Turkey and back calculation of selected events. Nat Hazard Earth Sys 14:1145–1154. doi:10.5194/nhess-14-1145-2014

    Article  Google Scholar 

  • Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J Glaciol 45:242–254. doi:10.3198/1999JoG45-150-242-254

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS, Comp. Meth. Geos., vol. 13. Pergamon, New York, 398

  • Bonham-Carter GF, Agterberg FP, Wright DF (1988) Integration of geological data sets for gold exploration in Nova Scotia. Photogram Eng Remote Sens 54:1585–1592. doi:10.1029/SC010p0015

    Google Scholar 

  • Bühler Y, Kumar S, Veitinger J, Christen M, Stoffel A, Snehmani (2013) Automated identification of potential snow avalanche release areas based on digital elevation models. Nat Hazard Earth Sys 13:1321–1335. doi:10.5194/nhess-13-1321-2013

    Article  Google Scholar 

  • Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54:193–205. doi:10.1016/j.coldregions.2008.06.005

    Article  Google Scholar 

  • Choi Y, Yi H, Park HD (2011) A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure. Comput Geosci 37:1035–1044. doi:10.1016/j.cageo.2010.07.008

    Article  Google Scholar 

  • Christen M, Bartelt P, Gruber U (2002) AVAL-1D: an avalanche dynamics program for the practice. Interpraevent 2002. Congress publication, Matsumoto 2:715-725

    Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. doi:10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and applications of geomorphology. Springer-Verlag, Berlin, pp 268–317

    Chapter  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modeling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54:311–324. doi:10.1007/s00254-007-0818-3

    Article  Google Scholar 

  • Delparte D (2008) Avalanche terrain modeling in Glacier National Park, Canada. PhD Thesis, University of Calgary, Calgary, AB, Canada, p 179

  • Dikau R, Brunsden D, Schrott L, Ibsen ML (1996) Landslide recognition: identification, movement and causes. Wiley, Chichester, p 274

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730. doi:10.1007/s00254-001-0454-2

    Article  Google Scholar 

  • Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazard Earth Sys 7:89–101. doi:10.5194/nhess-7-89-2007

    Article  Google Scholar 

  • Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17:413–422. doi:10.1016/0098-3004(91)90048-I

    Article  Google Scholar 

  • Gauer P, Kristensen K (2016) Four decades of observations from NGI’s full-scale avalanche test site Ryggfonn—summary of experimental results. Cold Reg Sci Technol 125:162–176. doi:10.1016/j.coldregions.2016.02.009

    Article  Google Scholar 

  • Graveline MH, Germain D (2016) Ice-block fall and snow avalanche hazards in northern Gaspésie (eastern Canada): triggering weather scenarios and process interactions. Cold Reg Sci Technol 123:81–90. doi:10.1016/j.coldregions.2015.11.012

    Article  Google Scholar 

  • Gruber S (2007) A mass-conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models. Water Resour Res 43:1–8. doi:10.1029/2006WR004868

    Article  Google Scholar 

  • Gruber U, Margreth S (2001) Winter 1999: a valuable test of the avalanche-hazard mapping procedure in Switzerland. Ann Glaciol 32:328–332. doi:10.3189/172756401781819238

    Article  Google Scholar 

  • He B, Chen J, Chen C, Liu Y (2012) Mineral prospectivity mapping method integrating multi-sources geology spatial data sets and case-based reasoning. J Geogr Inf Syst 4:77–85. doi:10.4236/jgis.2012.42011

    Google Scholar 

  • Heathwaite AL, Quinn PF, Hewett CJM (2005) Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. J Hydrol 304:446–461. doi:10.1016/j.jhydrol.2004.07.043

    Article  Google Scholar 

  • Heller V, Hager WH (2011) Wave types of landslide generated impulse waves. Ocean Eng 38:630–640. doi:10.1016/j.oceaneng.2010.12.010

    Article  Google Scholar 

  • Hofmeister RJ, Miller DJ, Mills KA, Hinkle JC, Beier AE (2002) GIS overview map of potential rapidly moving landslide hazards in Western Oregon. Interpretive Map Series IMS-22. http://www.oregongeology.org/sub/publications/IMS/ims-022/ims-022.htm. Accessed 01 Dec 2016

  • Horton P, Jaboyedoff M, Rudaz BEA, Zimmermann M (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat Hazard Earth Sys 13:869–885. doi:10.5194/nhess-13-869-2013

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. doi:10.1029/97RG00426

    Article  Google Scholar 

  • Jackson LE Jr, Hungr O, Gardner JS, Mackay C (1989) Cathedral Mountain debris flows, Canada. B Eng Geol Environ 40:35–54. doi:10.1007/BF02590340

    Google Scholar 

  • Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Springer, Berlin, p 170

    Google Scholar 

  • Johnson AM (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 257–361

    Google Scholar 

  • Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631–642. doi:10.1016/j.geomorph.2008.03.003

    Article  Google Scholar 

  • Kim SM, Suh J, Oh S, Son J, Hyun CU, Park HD, Choi Y (2016) Assessing and prioritizing environmental hazards associated with abandoned mines in Gangwon-do, South Korea: the Total mine hazards index. Environ Earth Sci 75:1–14. doi:10.1007/s12665-016-5283-4

    Article  Google Scholar 

  • Lee S (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ Geol 52:615–623. doi:10.1007/s00254-006-0491-y

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. doi:10.1007/s00254-005-1228-z

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131. doi:10.1007/s00254-002-0616-x

    Article  Google Scholar 

  • Li J, Yuan J, Bi C, Luo D (1983) The main features of the mudflow in Jiang-Jia ravine (SW China). Z Geomorphol 27:325–341

    Google Scholar 

  • Li J, Chen N, Wang T, Iqbal J, Xiang L (2017) A model for total volume of debris flow with intermittent surges based on maximum peak discharge and movement time. Geosyst Eng 20:181–194. doi:10.1080/12269328.2016.1248298

    Article  Google Scholar 

  • Maggioni M (2004) Avalanche release areas and their influence on uncertainty in avalanche hazard mapping. PhD Thesis, University of Zurich, Zurich, p 139

    Google Scholar 

  • Maggioni M, Gruber U (2003) The influence of topographic parameters on avalanche release dimension and frequency. Cold Reg Sci Technol 37:407–419. doi:10.1016/S0165-232X(03)00080-6

    Article  Google Scholar 

  • Maggioni M, Freppaz M, Ceaglio E, Godone D, Viglietti D, Zanini E, Barbero M, Barpi F, Brunetto MB, Bovet E, Chiaia B, De Biagi V, Frigo B, Pallara O (2013) A new experimental snow avalanche test site at Seehore peak in Aosta Valley (NW Italian alps)-part I: conception and logistics. Cold Reg Sci Technol 85:175–182. doi:10.1016/j.coldregions.2012.09.006

    Article  Google Scholar 

  • Mahboob MA, Iqbal J, Atif I (2015) Modeling and simulation of glacier avalanche: a case study of Gayari sector glaciers hazards assessment. IEEE T Geosci Remote 53:5824–5834. doi:10.1109/TGRS.2015.2419171

    Article  Google Scholar 

  • Margreth S, Stoffel L, Wilhelm C (2003) Winter opening of high alpine pass roads – analysis and casa studies from the Swiss alps. Cold Reg Sci Technol 37:467–482. doi:10.1016/S0165-232X(03)00085-5

    Article  Google Scholar 

  • McClung D (2001) Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Ann Glaciol 32:223–229. doi:10.3189/172756401781819391

    Article  Google Scholar 

  • Morton DM, Campbell RH (1974) Spring mudflows at Wrightwood, southern California. Q J Eng Geol 7:377–384. doi:10.1144/GSL.QJEG.1974.007.04.09

    Article  Google Scholar 

  • Neuhauser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24. doi:10.1016/j.geomorph.2006.08.002

    Article  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph 28:323–344. doi:10.1016/S0734-189X(84)80011-0

    Article  Google Scholar 

  • Oh H (2010) Landslide susceptibility analysis and validation using weight-of-evidence model. J of Geol Soc Korea 46:157–170

    Google Scholar 

  • Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res-Oceans 110:1–23. doi:10.1029/2004JC002778

    Article  Google Scholar 

  • Park HD, Chon HT (1998) A quantitative analysis on the influence of the rainfall on the landslides in Korea. International conference on environmental management. New South Wales, Australia, pp 1003–1009

  • Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat Hazard Earth Sys 13:2833–2849. doi:10.5194/nhess-13-2833-2013

    Article  Google Scholar 

  • Pierson TC (1980) Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf Processes 5:227–247. doi:10.1002/esp.3760050302

    Article  Google Scholar 

  • Salm B (2003) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226. doi:10.3198/1993AoG18-1-221-226

    Article  Google Scholar 

  • Schmid UG, Sardemann S (2003) High-frequency avalanches: release area characteristics and run-out distances. Cold Reg Sci Technol 37:439–451. doi:10.1016/S0165-232X(03)00083-1

    Article  Google Scholar 

  • Shang Y, Yang Z, Li L, Liu D, Liao Q, Wang Y (2003) A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology 54:225–243. doi:10.1016/S0169-555X(02)00358-6

    Article  Google Scholar 

  • Shang Y, Liu J, Liu D, Zhang L, Xia Y, Lei T (2015) Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake, China. Geomorphology 231:162–168. doi:10.1016/j.geomorph.2014.11.025

    Article  Google Scholar 

  • Shang Y, Hyun CU, Park HD, Yang Z, Yuan G (2017) The 102 landslide: human–slope interaction in SE Tibet over a 20-year period. Environ Earth Sci 76:47–62. doi:10.1007/s12665-016-6365-z

    Article  Google Scholar 

  • Suh J, Choi Y, Roh TD, Lee HJ, Park HD (2011) National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea. Environ Earth Sci 63:619–632. doi:10.1007/s12665-010-0729-6

    Article  Google Scholar 

  • Tarragüel AA, Krol B, Westen CV (2012) Analysing the possible impact of landslides and avalanches on cultural heritage in upper Svaneti, Georgia. J Cult Herit 13:453–461. doi:10.1016/j.culher.2012.01.012

    Article  Google Scholar 

  • Tropeano D, Turconi L, Rosso M, Cavallo C (2003) The October 15, 2000 debris flow in the Bioley torrent, Fenis, Aosta valley, Italy—damage and processes. In: Rickenmann D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Proceedings of the third international conference. Millpress, Rotterdam, pp 1037–1048

    Google Scholar 

  • Vincent C, Thibert E, Harter M, Soruco A, Gilbert A (2015) Volume and frequency of ice avalanches from Taconnaz hanging glacier, French alps. Ann Glaciol 56:17–25. doi:10.3189/2015AoG70A017

    Article  Google Scholar 

  • Yang Z, Zhang L, Shang Y, Zeng Q, Li L (2006) Assessment of the degree of reinforcement demand (DRD) for rock slope projects—principles and a case example application. Int J Rock Mech Min 43:531–542. doi:10.1016/j.ijrmms.2005.09.010

    Article  Google Scholar 

  • Yi H, Choi Y, Kim SM, Park HD, Lee SH (2017) Calculating time-specific flux of runoff using DEM considering storm sewer collection systems. J Hydrol Eng 22. doi:10.1061/(ASCE)HE.1943-5584.0001463

  • Yongbo F, Adewuyi OI, Chun F (2015) Strength characteristics of soil rock mixture under equal stress and cyclic loading conditions. Geosyst Eng 18:73–77. doi:10.1080/12269328.2014.1002633

    Article  Google Scholar 

  • Zahiri H, Palamara DR, Flentje P, Brassington GM, Baafi E (2006) A GIS-based weights-of-evidence model for mapping cliff instabilities associated with mine subsidence. Environ Geol 51:377–386. doi:10.1007/s00254-006-0333-y

    Article  Google Scholar 

  • Zitti G, Ancey C, Postacchini M, Brocchini M (2016) Impulse waves generated by snow avalanches: momentum and energy transfer to a water body. J Geophys Res-Earth 121:2399–2423. doi:10.1002/2016JF003891

    Article  Google Scholar 

  • Zitti G, Ancey C, Postacchini M, Brocchini M (2017) Snow avalanches striking water basins: behaviour of the avalanche’s centre of mass and front. Nat Hazards. doi:10.1007/s11069-017-2919-y

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0085129), the Brain Korea 21 Plus Project (No.21A20130012821), and the Research Institute of Energy and Resources, Seoul National University, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong-Dong Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SM., Park, HD. Analogy between grid-based modeling of landslide and avalanche using GIS with surface flow analysis. Bull Eng Geol Environ 78, 189–206 (2019). https://doi.org/10.1007/s10064-017-1144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1144-y

Keywords

Navigation