Skip to main content
Log in

Development of new models for the estimation of deformation moduli in rock masses based on in situ measurements

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Knowledge of the deformation properties of the rock mass is essential for the stress–strain analysis of structures such as dams, tunnels, slopes, and other underground structures and the most important parameter of the deformability of the rock mass is the deformation modulus. This paper describes statistical models based on multiple linear regression and artificial neural networks. The models are developed using the test results of the deformation modulus obtained during the construction of the Iron Gate 1 dam on the Danube River and correlate these with measurements of the velocities of longitudinal waves and pressures in the rock mass. The parameters used for defining the models were obtained by in situ testing during dam construction, meaning that scale effects were also taken into account. For the analysis, 47 experimental results from in situ testing of the rock mass were obtained; 38 of these were used for modelling and nine were used for testing of the models. The model based on the artificial neural networks showed better performance in comparison to the model based on multiple linear regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ajalloeian R, Mohammadi M (2014) Estimation of limestone rock mass deformation modulus using empirical equations. Bull Eng Geol Environ 73:541–550. doi:10.1007/s10064-013-0530-3

    Article  Google Scholar 

  • Aksoy CO, Geniş M, Aldaş GU, Özacar V, Özer SC, Yilmaz Ö (2012) A comparative study of the determination of rock mass deformation modulus by using different empirical approaches. Eng Geol 131–132:19–28. doi:10.1016/j.enggeo.2012.01.009

    Article  Google Scholar 

  • Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2015a) Modelling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82. doi:10.1016/j.enggeo.2015.12.002

    Article  Google Scholar 

  • Alemdag S, Gurocak Z, Gokceoglu C (2015b) A simple regression based approach to estimate deformation modulus of rock masses. J Afr Earth Sci 110:75–80

    Article  Google Scholar 

  • Azimian A, Ajalloeian R (2014) Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity. Arab J Geosci 8:2069–2079. doi:10.1007/s12517-013-1235-4

    Article  Google Scholar 

  • Banimahd M, Yasrobi S, Woodward P (2005) Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification. Comput Geotech 32:377–386

    Article  Google Scholar 

  • Bieniawski ZT (1978) Determining rock mass deformability: experience from case histories. Int J Rock Mech Min Sci Geomech Abstr 15:237–247

    Article  Google Scholar 

  • Brotons V, Tomás R, Ivorra S, Crediaga A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone. Bull Eng Geol Environ 73:791–799. doi:10.1007/s10064-014-0583-y

    Article  Google Scholar 

  • Chun BS, Ryu WR, Sagong M, Do JN (2009) Indirect estimation of the rock deformation modulus based on polynomial and multiple regression analyses of the RMR system. Int J Rock Mech Min Sci 46:649–658. doi:10.1016/j.ijrmms.2008.10.001

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Kayabasi A (2003) Predicting the deformation moduli of rock masses. Int J Rock Mech Min Sci 40:701–710. doi:10.1016/S1365-1609(03)00062-5

    Article  Google Scholar 

  • Hagan M, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5:989–993

    Article  Google Scholar 

  • Hoek E, Brown E (1997) Practical estimation of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186

    Article  Google Scholar 

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43:203–215. doi:10.1016/j.ijrmms.2005.06.005

    Article  Google Scholar 

  • Kayabasi A, Gokceoglu C, Ercanoglu M (2003) Estimating the deformation modulus of rock masses: a comparative study. Int J Rock Mech Min Sci 40:55–63. doi:10.1016/S1365-1609(02)00112-0

    Article  Google Scholar 

  • Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys 170:507–514. doi:10.1007/s00024-012-0556-7

    Article  Google Scholar 

  • Kujundzic B (1970) Contribution of Yugoslav experts to the development of rock mechanics. In: Proceedings of the second congress of the international society for rock mechanics, pp 169–174

  • Kujundzic B (1977) Basics of rock mechanics I. Society of Civil Engineers and Technicians of Yugoslavia, Belgrade

    Google Scholar 

  • Kujundzic B, Grujic N (1966) Correlation between static and dynamic investigations of rock mass in situ. In: Proceedings of the first congress of the international society of rock mechanics, pp 565–571

  • Majdi A, Beiki M (2010) Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int J Rock Mech Min Sci 47:246–253

    Article  Google Scholar 

  • Monjezi M, Dehghani H (2008) Evaluation of effect of blasting pattern parameters on back break using neural networks. Int J Rock Mech Min Sci 45:1446–1453

    Article  Google Scholar 

  • Nejati HR, Ghazvinian A, Moosavi SA, Sarfarazi V (2014) On the use of the RMR system for estimation of rock mass deformation modulus. Bull Eng Geol Environ 73:531–540. doi:10.1007/s10064-013-0522-3

    Article  Google Scholar 

  • Nicholson G, Bieniawski Z (1990) A nonlinear deformation modulus based on rock mass classification. Int J Min Geol Eng 8:181–202. doi:10.1007/BF01554041

    Article  Google Scholar 

  • Osborne M (1992) Fisher’s method of scoring. Int Stat Rev 60:99–117

    Article  Google Scholar 

  • Pappalardo G (2015) Correlation between P-wave velocity and physical—mechanical properties of intensely jointed dolostones, Peloritani Mounts, NE Sicily. Rock Mech Rock Eng 48:1711–1721. doi:10.1007/s00603-014-0607-8

    Article  Google Scholar 

  • Pinto da Cunha A, Muralha J (1990) About LNEC experience on scale effects in the deformability of rock masses. In: proceedings of the first international workshop on scale effects in rock masses, Loen, Norway

  • Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  • Serafim JL, Pereira JP (1983) Considerations on the geomechanical classification of Bienawski. In: Proceedings of the symposium on engineering geology and underground openings 1133–1144

  • Shen J, Karakus M, Xu C (2012) A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunn Undergr Space Technol 32:245–250

    Article  Google Scholar 

  • Shen X, Chen M, Lu W, Li L (2016) Using P wave modulus to estimate the mechanical parameters of rock mass. Bull Eng Geol Environ. doi:10.1007/s10064-016-0932-0

    Google Scholar 

  • Song YH, Ju GH, Sun M (2011) Relationship between wave velocity and deformation modulus of rock masses. Rock soil Mech 32(5):1507–1512 (in Chinese)

    Google Scholar 

  • Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 43:224–235

    Article  Google Scholar 

  • Wittke W (2014) Rock mechanics based on an anisotropic jointed rock model (AJRM). Ernst & Sohn, Berlin

    Book  Google Scholar 

  • Yu H, Wilamowski BM (2011) Levenberg–Marquardt training. Ind. Electron. Handbook, vol. 5—IEE Inteligent Systems 12–1 to 12–16. CRC Press 2011, London. doi:10.1201/b10604-15

Download references

Acknowledgements

The part of this research is supported by Ministry of Education and Science of Serbia, Project TR37013 (Development of a system for safety management of high dams in the Republic of Serbia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobodan Radovanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radovanović, S., Ranković, V., Anđelković, V. et al. Development of new models for the estimation of deformation moduli in rock masses based on in situ measurements. Bull Eng Geol Environ 77, 1191–1202 (2018). https://doi.org/10.1007/s10064-017-1027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1027-2

Keywords

Navigation