Skip to main content
Log in

Swelling laws for clay-sulfate rocks revisited

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The swelling of clay-sulfate rocks is a major threat in tunnel engineering and in the installation of shallow geothermal systems. It can cause serious damage to tunnels and buildings; and produce high additional costs during tunnel construction and operation. The swelling may result in a heave of the tunnel invert, destruction of the lining or uplift of the entire tunnel section. Heave–pressure–time relations are therefore needed in order to predict the mechanical behavior of swelling rock as a basis for an optimal tunnel design. The present study revisits different stress–strain relations (“swelling laws”) for swelling clay-sulfate rocks proposed by various authors. Published laboratory data from oedometric swelling tests are presented that may confirm the proposed stress–strain relationships. These data are re-examined by testing each of the different data sets with the different proposed relations. One main outcome of this study is that different interpretations of stress–strain data are possible and none of the swelling laws proposed in the literature could be generally confirmed or rejected. We conclude that a generally valid swelling law in the form of a stress–strain relation does not yet exist. A promising approach to describe the swelling behavior of clay-sulfate rocks, however, is process-based numerical modeling, which is also briefly introduced in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alonso EE, Olivella S (2008) Modelling tunnel performance in expansive gypsum claystone. 12th International Conference on Computer Methods and Advances in Geomechanics, Goa, 2008, pp 891–910

  • Alonso EE, Ramon A (2013) Heave of a railway bridge induced by gypsum crystal growth: Field observations. Geotechnique 63:707–719

    Article  Google Scholar 

  • Alonso EE, Berdugo IR, Ramon A (2013) Extreme expansive phenomena in anhydritic-gypsiferous claystone: the case of Lilla tunnel. Geotechnique 63:584–612

    Article  Google Scholar 

  • Anagnostou G (1992) Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge (Investigations of tunnel statics in swelling rock). PhD thesis, ETH Zurich

  • Anagnostou G (1993) A model for swelling rock in tunnelling. Rock Mech Rock Eng 26:307–331

    Article  Google Scholar 

  • Benz T, Wehnert M (2010) Schadensfall Staufen. Berechnungen der zeitlichen Entwicklung der Hebungsprozesse. Zweidimensionale Finite Elemente Berechnungen. (Case of Staufen. Calculation of temporal development of the heave processes. Two-dimensional finite element calculations.). Unpublished report

  • Berdugo IR, Alonso EE, Romero E, Gens A (2009a) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part I: case studies from Baden-Württemberg. Revista Epsilon 12:1–17

    Google Scholar 

  • Berdugo IR, Alonso EE, Romero E, Gens A (2009b) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part II; case studies from Jura Mountains. Revista Epsilon 12:18–30

    Google Scholar 

  • BMV (ed) (1975) Durchführung eines felsmechanischen Großversuches in der Nordröhre des Wagenburgtunnels in Stuttgart (A rock mechanical large-scale experiment in the northern tube of the Wagenburg tunnel in Stuttgart). Bundesministerium für Verkehr, Straßenbau und Straßenverkehrstechnik 184, 195

  • Butscher C, Huggenberger P, Auckenthaler A, Banninger D (2011) Risk-oriented approval of borehole heat exchangers. Grundwasser 16:13–24

    Article  Google Scholar 

  • Butscher C, Mutschler T, Blum P (2016) Swelling of clay-sulfate rocks: A review of processes and controls. Rock Mech Rock Eng 49:1533–1549

    Article  Google Scholar 

  • DGGT (1986) Empfehlung Nr. 11 des Arbeitskreises 19—Versuchstechnik Fels—der Deutschen Gesellschaft für Geotechnik: Quellversuche an Gesteinsproben (Recommendation no. 11 of the working party 19—Rock Testing—of the German Geotechnical Society: Swelling experiments on rock samples). Bautechnik 63:100–104

    Google Scholar 

  • Einstein HH (1996) Tunnelling in difficult ground—Swelling behaviour and identification of swelling rocks. Rock Mech Rock Eng 29:113–124

    Article  Google Scholar 

  • Flückiger A, Nüesch R, Madsen FT (1994) Anhydritquellung (Anhydrite swelling). In: Kohler EE (ed) Jahrestagung DGGT, Regensburg, Germany, 13-14 September 1994. Berichte der Deutschen Ton- und Tonmineralgruppe, pp 146–153

  • Goldscheider N, Bechtel TD (2009) Editors’ message: The housing crisis from underground-damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany. Hydrogeol J 17:491–493

    Article  Google Scholar 

  • Grimm M, Stober I, Kohl T, Blum P (2014) Schadensfallanalyse von Erdwärmesondenbohrungen in Baden-Württemberg (Damage event analysis of drilling borehole heat exchangers in Baden-Württemberg, Germany). Grundwasser 19:275–286

    Article  Google Scholar 

  • Grob H (1972) Schwelldruck im Belchentunnel (Swelling pressure in the Belchen tunnel). Paper presented at the International Symposium for Tunneling, Luzern, Switzerland, 11–14 September 1992, pp 99–119

  • Heidkamp H, Katz C (2004) The swelling phenomenon of soils: proposal of an efficient continuum modelling approach. In: Schubert W (ed) EUROCK 2004 and 53rd Geomechanics Colloquium. Austria, Salzburg, pp 6–8

    Google Scholar 

  • Huder J, Amberg G (1970) Quellung in Mergel, Opalinuston und Anhydrit (Swelling in marl, Opalinus clay and anhydrite). Schweizer Bauzeitung 88:975–980

    Google Scholar 

  • ISRM (1994) Comments and recommendations on design and analysis procedures for structures in argillaceous swelling rock. Int J Rock Mech Mining Sci 31:535–546

    Article  Google Scholar 

  • ISRM (1999) Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci 36:291–306

    Article  Google Scholar 

  • Jeschke AA, Vosbeck K, Dreybrodt W (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim Cosmochim Acta 65:27–34

    Article  Google Scholar 

  • Karlsruhe TH (2003) Langzeit-Schwellversuche an Probenmaterial aus dem Freudensteintunnel (Long-term swelling tests with samples from the Freudenstein tunnel). Unpublished report

  • Katzenbach R, Bergmann C, Leppla S (2010) Langzeituntersuchungen zum Schwell- und Quellverhalten von Anhydrit (long term experiments of the swelling behaviour of anhydrite). Bauingenieur 85:113–117

    Google Scholar 

  • Kirschke D (1995) Neue Versuchstechniken und Erkenntnisse zum Anhydritschwellen (New experimental techniques and insights in anhydrite swelling). Taschenbuch für den Tunnelbau 1996, Verlag Glückauf, Essen, Germany, pp 203–225

  • Kovári K, Chiaverio F (2007) Modular yielding support for tunnels in heavily swelling rock. STUVA Conference 07, Cologne, Germany, 26-29 November 2007

  • Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4:143–156

    Article  Google Scholar 

  • Madsen FT, Nüesch R (1991) The swelling behaviour of clay-sulfate rocks. In: Wittke W (ed) 7th International Congress on Rock Mechanics, Aachen, Germany, 16–20 September 1991. Balkema, Rotterdam, pp 285–288

    Google Scholar 

  • Madsen FT, Flückiger A, Hauber L, Jordan P, Voegtli B (1995) New investigations on swelling rocks in the Belchen tunnel, Switzerland. In: Fujii T (ed) 8th International Congress on Rock Mechanics, Tokyo, Japan, 22–30 September 1995. Balkema Publishers, Taylor & Francis, The Netherlands, pp 263–267

  • Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102

    Google Scholar 

  • Pierau B, Kiehl JR (1995) Widerstands- und Ausweichprinzip: Vergleich zweier Entwurfsmethoden für Tunnelbauten in quellfähigem Gebirge (Resistance and yield principle: comparison of two design approaches for tunnels in swelling rock). Taschenbuch für den Tunnelbau 1996. Verlag Glückauf, Essen, pp 226–247

    Google Scholar 

  • Pimentel E (2007a) A laboratory testing technique and a model for the swelling behavior of anhydritic rock. 11th Congress of the International Society for Rock Mechanics, Lisbon, 9–13 July 2007

  • Pimentel E (2007b) Quellverhalten von Gesteinen—Erkenntnisse aus Laboruntersuchungen (Swelling bahvior of rocks—Insights from laboratory investigations). In: Frühjahrstagung der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Fribourg, Switzerland, 27 April 2007. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik 154, pp 11–20

  • Pimentel E (2015) Existing methods for swelling tests—a critical review. Energy Procedia 76:96–105

    Article  Google Scholar 

  • Pimentel E, Anagnostou G (2013) New apparatus and experimental setup for long-term swelling tests on sulphatic claystones. Rock Mech Rock Eng 46:1271–1285

    Article  Google Scholar 

  • Ramon A, Alonso EE (2013) Heave of a railway bridge: modelling gypsum crystal growth Géotechnique 63:720–732

    Google Scholar 

  • Rauh F, Spaun G, Thuro K (2006) Assessment of the swelling potential of anhydrite in tunnelling projects. In: Culshaw M, Reeves H, Spink T, Jefferson I (eds) 10th IAEG international congress, Nottingham, UK, September 6–10, 2006. IAEG Engineering geology for tomorrow’s cities, paper No 473, 8 pp

  • Ruch C, Wirsing G (2013) Erkundung und Sanierungsstrategien im Erdwärmesonden-Schadensfall Staufen i. Br. (Exploration and rehabilitation strategies in case of damaging geothermal heat exchangers in Staufen i. Br.). Geotechnik 36:147–159

    Article  Google Scholar 

  • Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 39:233–245

    Article  Google Scholar 

  • Sass I, Burbaum U (2012) Geothermische Bohrungen in Staufen im Breisgau: Schadensursachen und Perspektiven (Geothermal drillings in Staufen/Breisgau: Causes of damage and perspectives). Geotechnik 35:198–205

    Article  Google Scholar 

  • Steiner W (1993) Swelling rock in tunnels: rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Mining Sci Geomech Abstracts 30:361–380

    Article  Google Scholar 

  • Vergara MR, Balthasar K, Triantafyllidis T (2014) Comparison of experimental results in a testing device for swelling rocks. Int J Rock Mech Min Sci 66:177–180

    Google Scholar 

  • Wahlen R (2009) Validierung eines Berechnungsverfahrens für Tunnelbauwerke in quellfähigem Gebirge (Validation of a computational method for tunnels in swelling rock). Geotechnik in Forschung und Praxis WBI-Print vol 17, Verlag Glückauf, Essen

  • Wahlen R, Wittke W (2009) Kalibrierung der felsmechanischen Kennwerte für Tunnelbauten in quellfähigem Gebirge (Calibration of the rock mechanical parameters for tunnels in swelling rock). Geotechnik 32:226–233

    Google Scholar 

  • Wittke M (2003) Begrenzung der Quelldrücke durch Selbstabdichtung beim Tunnelbau im anhydritführenden Gebirge (Limitation of swelling pressures by self-sealing in tunneling in anhydrite-bearing rock). Geotechnik in Forschung und Praxis WBI-Print vol 13, Verlag Glückauf, Essen

  • Wittke W (2007) New high-speed railway lines Stuttgart 21 and Wendlingen-Ulm: Approximately 100 km of tunnels. Underground Space—the 4th Dimension of Metropolises, Vols 1–3, pp 771–778

  • Wittke W, Wittke M, Wahlen R (2004) The source law of anhydrite containing Gipskeuper. Geotechnik 27:112–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Butscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butscher, C., Breuer, S. & Blum, P. Swelling laws for clay-sulfate rocks revisited. Bull Eng Geol Environ 77, 399–408 (2018). https://doi.org/10.1007/s10064-016-0986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0986-z

Keywords

Navigation