Skip to main content

The behaviour of consolidated Neapolitan yellow Tuff against salt weathering

Abstract

Salt crystallization is a strong weathering agent in porous building materials. The crystallization pressure exerted by salt crystals, growing in confined pores, is found to be one of the main causes for damage. This paper presents the results of laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in Campanian architecture. Several specimens, collected from a historical quarry near the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Untreated and treated samples were then artificially degraded using salt crystallization tests in order to assess the effectiveness of consolidation treatments. A systematic approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the tuff. In addition, in order to make a correlation between porous structure of materials and susceptivity to salt crystallization, the calculation of the crystallization pressures was performed. In all samples, at the early stage of crystallization, the presence of gypsum was revealed, coming from the precipitation of sulphate ions, introduced during the test, and sodium ions, coming from the zeolites within the stone. Results showed that both consolidants increase the resistance of tuff to salt crystallization, although they induce an increase in crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Aloise P, Ricca M, La Russa MF, Ruffolo SA, Belfiore CM, Padeletti G, Crisci GM (2013) Diagnostic analysis of stone materials from under water excavations: the case study of the Roman archaeological site of Baia (Naples, Italy). Appl Phys A Mat Sci Process 114:655–662

    Article  Google Scholar 

  • Amoroso GG, Fassina V (1983) Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection. Elsevier, Amsterdam

    Google Scholar 

  • Angeli M, Bigas JP, Benavente D, Menendez B, Herbert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:187–195

    Article  Google Scholar 

  • Arnold A, Zehnder K (1989) Salt weathering on monuments. In: Zezza (ed) 1st International Symposium de La conservazione dei monumenti nel bacino del Mediterraneo, Influenza dell’ambiente costiero e dello spray marino sulla pietra calcarea e sul marmo. Bari, Italy, pp 31–58

  • ASTM D 5731 02 (2002) Standard test method for determination of the point load strength index of rock. doi:10.1520/D5731-02

  • Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interf Sci 392:42–49

    Article  Google Scholar 

  • de' Gennaro M, Calcaterra D, Cappelletti P, Langella A, Morra V (2000) Building stone and related weathering in the architecture of the ancient city of Naples. J Cult Herit 1:399–414

    Article  Google Scholar 

  • de’ Gennaro M, Franco E, Langella A, Mirra P, Morra V (1982) Le phillipsiti dei tufi gialli del napoletano. Period Miner 51:287–310

    Google Scholar 

  • de’ Gennaro M, Langella A (1996) Italian zeolitized rocks of technological interest. Miner Depos 31:452–472

    Article  Google Scholar 

  • Di Benedetto C, Bianchin S, Cappelletti P, Colella A, de' Gennaro M, Favaro M, Gambirasi A, Langella A, Luca G, Soranzo M (2012) The Neapolitan yellow tuff and the Vicenza stone: experimental investigations about effectiveness of antiswelling treatment. In: 12th International congress on the deterioration and conservation of stone Columbia University, New York

  • Di Benedetto C, Bianchin S, Langella A, Favaro M, Gambirasi A, Colella A, Luca G, Soranzo M, de’ Gennaro M, Cappelletti P (2013) The Neapolitan Yellow Tuff: experimental investigations about effectiveness of antiswelling treatment. Built Heritage: Monitoring Conservation Management, pp 1170–1177

  • Drdàcky M, Lesàk J, Rescic S, Slìzkovà Z, Tiano P, Valach J (2013) Standardization of peeling test for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater Struct 45:505–520

    Article  Google Scholar 

  • Egloffstein P, Kertesz P, Althaus E (1996) Vulkanische Tuffe als Werksteine: Zerfallprozesse und Konservierungsmoglichkeiten. Erhalten historisch bedeutsamer Bauwerke. Ernst, Sohn, pp 183–190

    Google Scholar 

  • Everett DH (1961) The thermodynamics of frost damages to porous solids. Trans Faraday Soc 57:1541–1551

    Article  Google Scholar 

  • Fitzner B, Snethlage R (1982) Ueber Zusammenhange zwischen Salzkristallisationsdruck und Porenradienverteilung. GP News L 3:13–24

    Google Scholar 

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  Google Scholar 

  • Kim EK, Won J, Do J, Kim SD, Kang YS (2009) Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit 10:221–241

    Article  Google Scholar 

  • Koniorczyk M, Gawin D (2012) Modelling of salt crystallization in building materials with microstructure-Poromechanical approach. Constr Build Mater 36:860–873

    Article  Google Scholar 

  • La Russa MF, Barone G, Belfiore CM, Mazzoleni P, Pezzino A (2011) Application of protective products to ‘‘Noto’’ calcarenite (south-eastern Sicily): a case study for the conservation of stone materials. Environ Earth Sci 62:1263–1272

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA, Belfiore CM, Aloise P, Randazzo L, Rovella N, Pezzino A, Montana G (2013) Study of the effects of salt crystallization on degradation of limestone rocks. Period Mineral 82:113–127

    Google Scholar 

  • La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, Crisci GM, Urzì C (2014a) Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeter Biodegr 96:87–96

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Pogliani P, Pelosi C, Andaloro M, Crisci GM (2014b) Cappadocian ignimbrite cave churches: stone degradation and conservation strategies. Period Mineral 83:187–206

  • La Russa MF, Belfiore CM, Fichera GV, Maniscalco R, Calabrò C, Ruffolo SA, Pezzino A (2015) The behaviour to weathering of the Hyblean limestone in the baroque architecture of the Val di Noto (SE Sicily): an experimental study on the “calcare a lumachella” stone. Constr Build Mater 77:7–19

    Article  Google Scholar 

  • Langella A, Calcaterra D, Cappelletti P, Colella A, D’Albora MP, Morra V, de' Gennaro M (2009) Lava stones from Neapolitan volcanic districts in the architecture of Campania region, Italy. Environ Earth Sci 59:145–160

    Article  Google Scholar 

  • Lazzarini L, Lombardi G, Marconi F, Meucci C (1996) New data on the characterisation and conservation of the Easter Island’s pyroclastics used for the Moais. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone. Moller, Berlin 2:1147–1157

  • Normal 43/93 (1993) Misure colorimetriche di superfici opache. In: Raccomandazioni Normal: alterazioni dei materiali lapidei e trattamenti conservativi: proposte per l'unificazione dei metodi sperimentali di studio e di controllo, Roma CNR: ICR

  • Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layer magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312

    Article  Google Scholar 

  • Rossi-Manaresi R, Tucci A (1991) Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Stud Conserv 36:53–58

    Google Scholar 

  • Ruedrich J, Kirchner D, Seidel M, Siegesmund S (2005) Beanspruchungen von Naturwerksteinen durch Salz- und Eiskristallisation im Porenraum sowie hygrische Dehnungsvorgange. Zeitschrift der Deutschen Geologischen Gesellschaft 156:59–73

    Article  Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A 100:829–834

    Article  Google Scholar 

  • Ruffolo SA, La Russa MF, Aloise P, Belfiore CM, Macchia A, Pezzino A, Crisci GM (2013) Efficacy of nanolime in restoration procedures of salt weathered limestone rock. Appl Phys A 114:753–758

    Article  Google Scholar 

  • Scarpati C, Cole P, Perrotta A (1993) The Neapolitan yellow Tuff – a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcan 55:343–356

    Article  Google Scholar 

  • Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Article  Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Steindlberger E (2004) Volcanic tuff from Hesse (Germany) and their weathering behavior. Special issue: stone decay hazards. Environ Geol 46:378–390

    Article  Google Scholar 

  • Stück H, Forgó LZ, Rüdrich J, Siegesmund S (2008) Török Á (2008) The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol 56:699–713

    Article  Google Scholar 

  • UNI EN 12370:2001 (2001) Natural stone test methods - Determination of resistance to salt crystallisation

  • Wellman HW, Wilson AT (1968) Salt weathering or fretting. In: Fairbridge (ed) Geomorphology, Part of the series Encyclopedia of Earth Science, pp 968–970

  • Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by POR Calabria FESR project “NANOPROTECH” (NANO PROtection TEchnology for Cultural Heritage).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro F. La Russa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

La Russa, M.F., Ruffolo, S.A., de Buergo, M.Á. et al. The behaviour of consolidated Neapolitan yellow Tuff against salt weathering. Bull Eng Geol Environ 76, 115–124 (2017). https://doi.org/10.1007/s10064-016-0874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0874-6

Keywords

  • Neapolitan Tuff
  • Salt weathering
  • Stone consolidation
  • Nanosilica