Skip to main content
Log in

Etude de l’evolution de la dimension fractale des grains de materiaux granulaires soumis a des essais mecaniques

Study of the evolution of the fractal dimension of a granular material’s grains during mechanical tests

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Résumé

La dimension fractale est une clé pour la compréhension du comportement des matériaux granulaires, elle apporte une vision plus claire sur l’influence de l’irrégularité des grains sur leur comportement mécanique. Cette étude repose, dans un premier temps, sur la réalisation d’une série d’essais mécaniques (essais de cisaillement à la boîte de Casagrande et essais œdométriques) et, dans un deuxième temps, sur la mise en évidence de la notion d’écrasement des grains engendrant une évolution de la fraction fractale en fonction des chemins de contraintes. Cette évolution donne naissance à une nouvelle structure granulaire avec de nouvelles caractéristiques géotechniques. L’influence de cette dimension fractale sur les propriétés des milieux granulaires est prise en considération pour une meilleure compréhension du comportement des granulats. Au cours de cette étude, l’accent a été particulièrement mis sur le calcul de deux dimensions fractales (méthode des masses et méthode de Box Counting) définies pour les matériaux: schiste, grès et calcaire; et cela pour les différentes classes granulaires. Les résultats après écrasement montrent l’existence d’une corrélation entre la dimension fractale et la nature, la taille et la forme des grains ainsi que les fines produites lors de l’écrasement. Par conséquent, la dimension fractale a une incidence sur la mesure des caractéristiques mécaniques des matériaux granulaires.

Abstract

Granular materials interest scientists because they play an important role in engineering and project achieving like earth-fill or rock-fill dams, pavements and railroads, etc. The structure of these materials is a mixture of different mineralogical grains whose shape and size are also very different and they are separated by a complex cracking process. Therefore, this kind of studies may require the identification of the properties of every single grain composing the material which sometimes leads to the difficulty of estimating its behavior. Euclidean geometry is not suitable to represent all complex geometries because the grains of granular materials are never perfect and, for a better understanding, we need to examine the irregularly shaped grains and to characterize their shapes using fractal dimension which is a parameter that indicates the degree of irregularity and defragmentation of a grain or a sample. In this study, two methods were used to calculate the fractal dimension (box Counting method and the method of masses). These two methods allow the characterization of the surface condition changes with the grains-witnesses’ shapes of each grains samples for the three studied local materials (shale, limestone and sandstone) we got in three forms (sub-rounded, angular and elongated) and three size classes (3.15/8, 3.15/5 and 5/8 mm) after the crushing caused by the mechanical testing performed at laboratory (the direct shear test and oedometer test). The crushing rate is evaluated by comparing the values of the calculated fractal dimension before and after mechanical test and the results show the evolution of the calculated fractal dimension for various samples according to the stress and the constraint paths. These results confirm the existing link between the fractal dimension and various other parameters like the particle size, the nature and the shape of the grains and also the produced fines during the crushing. Consequently, the fractal dimension has an effect on the measurement of mechanical characteristics of granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Références

  • AFNOR (1994) Essai de cisaillement rectiligne à la boîte, partie1: cisaillement direct. XPP 94-071-1, p 16

  • AFNOR (1997) Essai oedométrique. Essai de compressibilité sur les matériaux fins quasi saturés avec chargement par paliers. XPP 94-090-1, p 24

  • Hammer KP (2005) Analysis of granular materials in Pennsylvania highways. Thèse de Master en Science, Université de Pittsburgh

  • Hillel D (1982) Introduction to soil physics, Academic Press Inc, New York, ISBN 9780123485 205, Hardback, p 392

  • Huang GH, Zhan WH (2002) Fractal property of soil particle size distribution and its application. Acte Pedol Sin 39:490–497

    Google Scholar 

  • Hyslip J, Vallejo L (1997) Fractal analysis of the roughness and size distribution of granular material. Eng Geol 48(3–4):231–244

    Article  Google Scholar 

  • Lade PV, Yamamuro JA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):3109–3116

    Google Scholar 

  • Mandelbrot B (1975) Les objets fractals, forme, hasard et dimension. Editions Flammarion, Paris, p 190

    Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature. Edition W.II. Freeman, San Francisco, p 461

    Google Scholar 

  • Russe D, Hanson J, Ott E (1980) Dimension of strange attractors. Phys Rev Lett 45:1175–1178

    Article  Google Scholar 

  • Sarkar Nirupam, Chaudhuri BB (1995) Multifractal and generalized dimensions of gray-tone digital images. Signal Process 42:181–190

    Article  Google Scholar 

  • Troadec JP, Guyon E (1994) Du Sac de Billes au tas de Sables. Editions Odile JACOB, Paris

    Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tyler SW, Wheatcraft SW (1992) Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J 56:362–369

    Article  Google Scholar 

  • Wang X, Li M-H, Lui S, Lui G (2006) Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan plateau China. Geoderma 134(1–2):56–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldjia Bouzeboudja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzeboudja, A., Melbouci, B. Etude de l’evolution de la dimension fractale des grains de materiaux granulaires soumis a des essais mecaniques. Bull Eng Geol Environ 75, 821–839 (2016). https://doi.org/10.1007/s10064-015-0825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0825-7

Mots clés

Keywords

Navigation