An approach for characterising the weathering behaviour of Flysch slopes applied to the carbonatic Flysch of Alicante (Spain)

Original Paper

Abstract

Various studies indicate that most of the slope instabilities affecting Flysch heterogeneous rock masses are related to differential weathering of the lithologies that make up the slope. Therefore, the weathering characteristics of the intact rock are of great importance for the study of these types of slopes and their associated instability processes. The main aim of this study is to characterise the weathering properties of the different lithologies outcropping in the carbonatic Flysch of Alicante (Spain), in order to understand the effects of environmental weathering on them, following slope excavation. To this end, 151 strata samples obtained from 11 different slopes, 5–40 years old, were studied. The lithologies were identified and their mechanical characteristics obtained using field and laboratory tests. Additionally, the slaking properties of intact rocks were determined, and a classification system proposed based on the first and fifth slake cycles (Id1 and Id5 respectively) and an Index of Weathering (IW5), defined in the study. Information obtained from the laboratory and the field was used to characterise the weathering behaviour of the rocks. Furthermore, the slaking properties determined from laboratory tests were related to the in-situ weathering properties of rocks (i.e., the weathering profile, patterns and length, and weathering rate). The proposed relationship between laboratory test results, field data, and in-situ observations provides a useful tool for predicting the response of slopes to weathering after excavation during the preliminary stages of design.

Keywords

Carbonatic Flysch lithologies Slake Durability Test Index of weathering Weathering profile Weathering rate 

Résumé

Certains études indiquent que la plupart des instabilités de pente qui affectent les masses rocheuses hétérogènes telles que des formations de Flysch sont liés au l’effritement différentielle des lithologies qui composent la pente. Par conséquent, la caractérisation du comportement devant de l’effritement de la matrice rocheuse c’est un aspect clé pour l’étude de ces types de pentes et de leurs processus d’instabilité associés. Le principal objectif de ce travail est la caractérisation des propriétés de résistance aux intempéries des différentes lithologies qui affleurent dans la zone d’étude afin de connaître leur comportement devant l’effritement après l’excavation des pentes. A cet effet, ont été étudiés 151 échantillons obtenus à partir de strates de 11 pentes différentes, âgés de 5 à 40 ans. Ces lithologies ont été identifiées et caractérisées mécaniquement en utilisant des critères de terrain et en laboratoire. En plus, le comportement devant le slaking de la matrice rocheuse a été déterminé, en proposant une classification basée sur le premier et le cinquième cycle de l’assai cyclique de durabilité (Id1 et Id5 respectivement) et un index défini dans le présent travail, appelé Index of Weathering (IW5). Toute l’information compilée à partir de laboratoire et de terrain a été utilisé pour caractériser les différents comportements devant l’effritement des roches étudiées. En outre, les propriétés du slaking basées sur des tests de laboratoire ont été liées avec la résistance aux intempéries des roches in situ (c’est-à-dire, le profil d’effritement, modèles et longueur et taux d’effritement). La relation indiquée entre le laboratoire, les données de terrain et les observations in situ fournit un outil très utile pour évaluer l’évolution devant l’effritement espéré des pentes depuis leur excavation aux étapes préliminaires d’avant-projets.

Mots clés 

Lithologies carbonatées du Flysch Essai cyclique de durabilité Index d’effritement Profil d’effritement Taux d’effritement 

Supplementary material

10064_2014_632_MOESM1_ESM.xlsx (2.6 mb)
Supplementary material 1 (XLSX 2701 kb)

References

  1. AEMET (2005) Guía resumida del clima en España 1971–2000: Plan Estadístico Nacional 2001–2004. Ministerio de Medio Ambiente, MadridGoogle Scholar
  2. ASTM (2004) Standard test method for slake durability of shales and similar weak rocks (D4644-04). American Society for testing and Materials, Philadelphia 4 pGoogle Scholar
  3. ASTM (2007) Standard Test Method for Rapid Determination of Carbonate Content of Soils (ASTM D4373–02(2007)). American Society for testing and Materials, PhiladelphiaGoogle Scholar
  4. Bell FG, Entwisle DC, Culshaw MG (1997) A geotechnical survey of some British Coal Measures mudstones, with particular emphasis on durability. Eng Geol 46:115–129CrossRefGoogle Scholar
  5. Cano M, Tomás R (2013a) Characterization of the instability mechanisms affecting slopes on carbonatic Flysch: Alicante (SE Spain), case study. Eng Geol 156:68–91CrossRefGoogle Scholar
  6. Cano M, Tomás R (2013b) Assessment of corrective measures for alleviating slope instabilities in carbonatic Flysch formations: Alicante (SE of Spain) case study. Bull Eng Geol Environ 72(3–4):509–522CrossRefGoogle Scholar
  7. Chigira M, Nakamoto M, Nakata E (2002) Weathering mechanisms and their effects on the landsliding of ignimbrite subject to vapor-phase crystallization in the Shirakawa pyroclastic flow, northern Japan. Eng Geol 66:111–125CrossRefGoogle Scholar
  8. Colodrón I, Ruiz V (1980). Mapa Geológico de Villajoyosa escala 1:50.000 (No 847), IGMEGoogle Scholar
  9. Crosta G (1998) Slake durability vs ultrasonic treatment for rock durability determinations. Int J Rock Mech Min Sci 35(6):815–824CrossRefGoogle Scholar
  10. Czerewko MA, Crips JC (2001) Assessing the durability of mudrocks using the modified jar slake index test. Q J Eng Geol Hydrogeol 34(2):153–163CrossRefGoogle Scholar
  11. Dick JC, Shakoor A (1995) Characterizing durability of mudrocks for slope stability purposes. Geol Soc Am Rev Eng Geol X(5):121–130CrossRefGoogle Scholar
  12. Dick JC, Shakoor A, Wells NA (1994) A geological approach toward developing a mudrock durability classification system. Can Geotech J 31(5):17–27CrossRefGoogle Scholar
  13. Erguler ZA, Ulusay R (2009) Assessment of physical disintegration characteristics of clay-bearing rocks: disintegration index test and a new durability classification chart. Eng Geol 05:11–19CrossRefGoogle Scholar
  14. Franklin JA, Chandra A (1972) The slake-durability test. Int J Rock Mech Min Sci 9:325–341CrossRefGoogle Scholar
  15. Fuenkajorn K (2011) Experimental assessment of long-term durability of some weak rocks. Bull Eng Geol Environ 70(2):203–211CrossRefGoogle Scholar
  16. Gamble JC (1971) Durability–plasticity classification of shales and other argillaceous rocks. PhD Thesis, University of IllinoisGoogle Scholar
  17. Geological Society of London (1977) The description of rock masses for engineering purposes: report by the Geological Society Engineering Group Working Party. Q J Eng Geol Hydrogeol 10:55–388Google Scholar
  18. Goel RK, Singh B (2011) Engineering rock mass classification: tunnelling, foundations and landslides. Butterworth-Heinemann, BostonGoogle Scholar
  19. Gökçeoğlu C, Ulusay R, Sönmez H (2000) Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Eng Geol 57:215–237CrossRefGoogle Scholar
  20. Guerrera F, Estévez A, López-Arcos M, Martín-Martín M, Martín-Pérez JA, Serrano F (2006) Paleogene tectono-sedimentary evolution of the Alicante Trough (External Betic Zone, SE Spain) and its bearing on the timing of the deformation of the South-Iberian Margin. Geodin Acta 19(2):87–101CrossRefGoogle Scholar
  21. ISRM (1977) Suggested methods for determining water content, porosity, density absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci Geo Abstr 16:141–156Google Scholar
  22. ISRM (1981) Rock characterization. In: Brown ET (ed) Testing and monitoring—ISRM suggested methods. Pergamon press, Oxford, p 211Google Scholar
  23. ISRM (1985) Suggested method for determining point load strength. Int Rock Mech Min Sci 22:53–60Google Scholar
  24. Jeong U, Yoon WS, Choi JW, Kim JH (2005) Influence of weathering depth and fracture intensity to cut slope movement. Geosci J 9(1):47–52CrossRefGoogle Scholar
  25. Kaufhold A, Gräsle W, Plischke I, Dohrmann R, Siegesmund S (2013) Influence of carbonatic content and micro fabrics on the failure strength of the sandy facies of the Opalinus Clay from Mont Terri (Underground Rock Laboratory). Eng Geol 156:111–118CrossRefGoogle Scholar
  26. Kiliç R (1999) The unified alteration index (UAI) for mafic rocks. Environ Eng Geosci V(4):475–483CrossRefGoogle Scholar
  27. Lamas F, Oteo C, Chacón J (2011) Influence of carbonatic content on the stress–strength behaviour of neogene marls from the betic cordillera (Spain) in cu triaxial tests using a quasilinear elastic (hyperbolic) model. Eng Geol 122:160–168CrossRefGoogle Scholar
  28. Leret-Verdú G, Núñez-Galiano A, Colodrón-Gómez I, Martínez del Olmo W (1976) Mapa Geológico de Alicante escala 1:50.000 (NO 872), IGMEGoogle Scholar
  29. Martin JD (2004) Using XPowder: a software package for Powder X-Ray diffraction analysis. D.L. GR 1001/04. Spain, p 105. ISBN 84-609-1497-6. http://www.xpowder.com
  30. Martínez-Bofill J, Corominas J, Soler A (2004) Behaviour of the weak rocks cutslopes and their characterization using the results of the Slake Durability Test. In: Lecture notes in Earth Sciences. 104. Engineering Geology for Infrastructure Planing in Europe, pp 405–413Google Scholar
  31. Miščcević P, Vlastelica G (2011) Durability characterization of marls from the region of Dalamtia, Croatia. Geotech Geol Eng 29:771–781CrossRefGoogle Scholar
  32. Moon VG, Beattie AG (1995) Textural and microstructural influences on the durability of Waikato coal measures mudrocks. Q J Eng Geol 14:255–279Google Scholar
  33. Nickmann M, Spaun G, Kurosch Thuro K (2006) Engineering geological classification of weak rocks. In: Proceedings of the 10th International IAEG Congress 2006, Nottingham. Paper number 492, IAEG LondonGoogle Scholar
  34. Ramamurthy T (1993) Comprehensive rock engineering. Strength, modulus responses of anisotropic rocks, 1st edn. Pergamon Press, Oxford, pp 313–329Google Scholar
  35. Richardson DN, Long JD (1987) The sieve Slake Durability Test. Bull Eng Geol 2(5):247–258Google Scholar
  36. Robert M, Tessier D (1974) Méthode de préparation des argiles des sols pour des études minéralogiques. Ann Agronom 25(6):859–882Google Scholar
  37. Sabatakakis N, Tsiambaos G, Koukis G (1993) Index properties of soft marly rocks of the Athens basin, Greece. In: Anagnostopoulos A (ed) Geotechnical engineering hard soil soft rock. Balkema, Rotterdam, pp 275–279Google Scholar
  38. Santi PM (1998) Improving de jar slake, slake index, and Slake Durability Tests for shales. Environ Eng Geosci IV(3):385–396CrossRefGoogle Scholar
  39. Sri-in T, Fuenkajorn K (2007) Slake durability index and strength testing of some rocks in Thailand. In: Fuenkajorn K, Phienwej N (eds) Rock mechanics. Geomechanics Research Unit, Suranaree University of Technology, Thailand, p 15Google Scholar
  40. Taylor RK (1988) Coal measures mudrocks: composition, classification and weathering processes. Q J Min Sci 7:81–501Google Scholar
  41. Ulusay R, Arikan F, Yoleri MF, Caglan D (1995) Engineering geological characterization of coal mine waste material and an evaluation in the context of back-analysis of spoil pile instabilities in a strip mine SW Turkey. Eng Geol 40:77–101CrossRefGoogle Scholar
  42. Vera JA (2004) Geología de España, Sociedad Geológica de España. Instituto Geológico y Minero de EspañaGoogle Scholar

Copyright information

© Springer - Verlag GmbH & Co KG Berlin-Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Ingeniería CivilEscuela Politécnica Superior, Universidad de AlicanteAlicanteSpain

Personalised recommendations