GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria)

  • Hamid Bourenane
  • Youcef Bouhadad
  • Mohamed Said Guettouche
  • Massinissa Braham
Original Paper


The city of Constantine has suffered frequent landslides during the last few decades because of its geological, geomorphological, climatic and seismotectonic setting as well as anthropic activities. In this work we perform a landslide susceptibility zonation (LSZ) zonation by using bivariate statistical and expert approaches in GIS technology for this area. Firstly, a landslide inventory map was constructed from interpretation of aerial photographs, high resolution satellite images, field surveys and bibliographies. Then various causal factors such as lithology, slope, aspect, precipitation, land use, distance to streams, distance to faults and anthropogenic factors like distance to roads associated with landslide activity were considered and the corresponding thematic layers generated using GIS techniques. The relative importance of these layers in causing landslides has been evaluated using bivariate statistics and expert methods to generate LSZ maps. The expert-based method provided a subjective classification of the study area in terms of landslide susceptibility which does not completely fit the landslide field survey. However unlikely, the bivariate statistics-based method provided the most satisfying results and appears to be the most accurate. Indeed, results show that 27.2 % of the study area lies within a very high to high susceptibility zone that encompasses 73.64 % of the existing landslides. Moderate, low and very low susceptibility zones cover, respectively, 25.7, 21.7 and 25.4 % of the study area. The LSZ maps generated may serve as useful tools for land management and planning in the Constantine region.


Landslide susceptibility zonation GIS Expert-based Bivariate statistics Algeria 



This research was supported by the Centre National de Recherche Appliqueé en Génie Parasismique (CGS) and the Université des Sciences et de la Technology Houari Boumerdiene Bab Ezzouar (USTHB) of Algiers. The authors are also grateful to two anonymous reviewers and to Professor Isik Yilmaz from university of Cumhuriyet University (Turkey) for their valuable comments and suggestions.


  1. Acharya G, De Smedt F, Long NT (2006) Assessing Landslide hazard in GIS: A case study from Rasuwa Nepal. Bull Eng Geol Environ 65:99–107CrossRefGoogle Scholar
  2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  3. Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277CrossRefGoogle Scholar
  4. ARCADIS (2003) Etude des glissements de terrain de la ville de Constantine et de ses alentours. Unpublished reportGoogle Scholar
  5. Aris Y, Coiffait PE, Guiraud R (1998) Characterisation of Mesozoic-Cenozoic deformation and paleostress fields in the Central Constantinois, northeast Algeria. Tectonophysics 290:59–85CrossRefGoogle Scholar
  6. Atkinson PM, Massari R (1998) Generalized linear modelling of susceptibility to landsliding in the central Appennines, Italy. Comput Geosci 24(4):373–385CrossRefGoogle Scholar
  7. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31CrossRefGoogle Scholar
  8. Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparison of results from two methods and verifications. Eng Geol 81:432–445CrossRefGoogle Scholar
  9. Bai S, Wang J, Lu G, Zhou P, Hou S, Xu S (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115:23–31CrossRefGoogle Scholar
  10. Benaissa A, Bellouche MA (1999) Propriétés géotechniques de quelques formations géologiques propices aux glissements de terrain dans l’agglomération de Constantine (Algérie). Bull Eng Geol Environ 57:301–310CrossRefGoogle Scholar
  11. Benaissa A, Cordary D, Giraud A (1989) Les mouvements de terrains dans la zone urbaine de Constantine (Algérie). Bull AIGI 740:85–90Google Scholar
  12. Benazzouz MT (2002) Les caractéristiques géomorphologiques des glissements de terrain à Constantine (Algérie): risques et aménagement. In: Proceedings of the Symposium “Geomorphology: from expert opinion to modelling”, Strasbourg, France, April 2002, pp 87–94Google Scholar
  13. Bougdal R (2007) Urbanisation et mouvements de versants dans le contexte géologique et géotechnique des bassins néogènes d’Algérie du Nord. PhD thesis. USTHB, Algiers, p 185Google Scholar
  14. Bougdal R, Belhai D, Antoine P (2006) Géologie de la ville de Constantine et de ses environs. Bull Serv Géol Algérie 18:3–23Google Scholar
  15. Bouhadad Y (2013) Occurrence and impact of characteristic earthquakes in northern Algeria. J Nat hazards 67:1573-0840. doi: 10.1007/s11069-013-0704-0 Google Scholar
  16. Bouhadad Y, Benhammouche A, Bourenane H, Ait Ouali A, Chikh M, Guessoum N (2010) The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (Mw = 5.2). Nat Hazards 54:261–272CrossRefGoogle Scholar
  17. Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of potenza. Nat Hazards 45:55–72. doi: 10.1007/s11069-007-9169-3
  18. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. Geographical information systems in assessing natural hazards. Kluwer, The Netherlands, pp 135–175CrossRefGoogle Scholar
  19. Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantanamo. Cuba Geomorphol 94(3–4):453–466CrossRefGoogle Scholar
  20. Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962CrossRefGoogle Scholar
  21. Chang JFC, Andrea GF (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(451–472):2003Google Scholar
  22. Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7:411–423CrossRefGoogle Scholar
  23. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sensing 65(12):1389–1399Google Scholar
  24. Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472CrossRefGoogle Scholar
  25. Coiffait PE (1992) Un bassin post-nappes dans son cadre structural : l’exemple du bassin de Constantine (Algérie Nord-Orientale). Thèse Doctorat Es-Sciences, ParisGoogle Scholar
  26. Coiffait PE, Vila JM, Guellal S (1977) Carte géologique d’El Aria à 1/50000Google Scholar
  27. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, TRB special report, 247. National Academy Press, Washington, pp 36–75Google Scholar
  28. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2007) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102(2008):496–510Google Scholar
  29. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S (2008) DEM-based deterministic landslide hazard analysis in the Lesser Himalaya of Nepal. Georisk: Assess Manage Risk Eng Syst Geohazards 2(3):161–178Google Scholar
  30. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228CrossRefGoogle Scholar
  31. Dai FC, Lee CF, Li JXuZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391CrossRefGoogle Scholar
  32. Dieu TB, Owe L, Inge R, Oystein D (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413–1444. doi: 10.1007/s11069-011-9844-2 CrossRefGoogle Scholar
  33. Djerbal L, Melbouci B (2012) Le glissement de terrain d’Ain El Hammam (Algérie):causes et évolution. Bull Eng Geol Environ 71:587–597. doi: 10.1007/s10064-012-0423-x CrossRefGoogle Scholar
  34. DUC Constantine (2004) Etude des glissements de terrain de la ville de Constantine, site de Belouizded-Kitouni, de Belle, de Boudraa Salah, de Boussouf. expertise des constructions endommagées. Unpublished internal report, p 51Google Scholar
  35. Durand Delga M (1969) Mise au point sur la structure du Nord-Est de la Berbérie. Publ Serv Géol Algérie 39:89–131Google Scholar
  36. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75(3–4):229–250. doi: 10.1016/j.enggeo.2004.06.001 CrossRefGoogle Scholar
  37. Ercanoglu M, Gokceoglu C, Van Asch TWJ (2008) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23CrossRefGoogle Scholar
  38. Fall M, Azzam R (2001a) Ingenieur geologische und numerische Standsicherheits analysen der Basaltkliffe in Dakar. Int J Felsbau 19(1):51–57Google Scholar
  39. Fall M, Azzam R (2001b) An example of multi-disciplinary approach to landslide assessment in coastal area. International conference on landslide, proceedings international conference on landslides: causes impacts and countermeasures, Glu¨ckauf Verlag, Davos, pp 45–54Google Scholar
  40. Ficheur M (1899) Carte géologique au 1/50 000ème de ConstantineGoogle Scholar
  41. Genevois R (2000) Landslides hazard identification and risk evaluation in the town of Constantine (NE Algeria). Unpublished report, Euro-Med Pilot Project on Civil Protection, 31 pGoogle Scholar
  42. Gokceoglu C, Aksoy H (1999) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44:147–161CrossRefGoogle Scholar
  43. Gorsevski PV, Gessler PE, Boll J, Elliot WJ, Foltz RB (2006) Spatially and temporally distributed modelling of landslide susceptibility. Geomorphology 80:178–198. doi: 10.1016/j.geomorph.2006.02.011 CrossRefGoogle Scholar
  44. Guemache MA (2004) Etude de l’instabilité de terrain dans le site du pont de Sidi Rached (Constantine, Nord-Est Algérie). Post-grade diss. CERG 2004, Geneva, University, 40 pGoogle Scholar
  45. Guemache MA, Chatelain JL, Machane D, Benahmed S, Djadia L (2011) Failure of landslide stabilization measures: the sidi rached viaduct case (Constantine, Algeria). African Earth Sci, pp 10 10.1016Google Scholar
  46. Guemache MA, Chatelain JL, Machane D, Benahmed S (1016) Djadia L (2011) Failure of landslide stabilization measures: the Sidi Rached viaduct case (Constantine, Algeria). Afr Earth Sci 10:10Google Scholar
  47. Guettouche MS (2012) Modeling and risk assessment of landslides using fuzzy logic. Application on the slopes of the Algerian Tell (Algeria). Arabian Geosci 39:1866-751. doi: 10.1007/s12517-012-0607-5 Google Scholar
  48. Guiraud R (1973) Evolution post-triasique de l’avant-pays de la chaîne alpine en Algérie, d’après l’étude du bassin du Hodna et des régions voisines. PhD. thesis. Nice UniversityGoogle Scholar
  49. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  50. Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, central Italy. Environ Manag 25(3):247–363CrossRefGoogle Scholar
  51. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Landslide hazard assessment in the Staffora basin, northern Italian Apennines. Geomorphology 72:272–299CrossRefGoogle Scholar
  52. Hadmoko DS (2007) Toward GIS-based integrated landslide hazard assessment: a critical overview. Indonesian Geogr 34:55–77Google Scholar
  53. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas. Eng Geol 85:347–366CrossRefGoogle Scholar
  54. Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4):17–28. doi: 10.1016/j.geomorph.2005.07.005
  55. Lee S (2007) Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea. Remote Sens 28:4763–4783CrossRefGoogle Scholar
  56. Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford, London, p 454CrossRefGoogle Scholar
  57. Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113CrossRefGoogle Scholar
  58. Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int Remote Sens 25(11):2037–2052CrossRefGoogle Scholar
  59. LNTPB (1980) Le pont de Sidi Rached. Etude des sols et propositions de confortement. Unpublished Internal reports. Laboratoire des Travaux PublicsGoogle Scholar
  60. LTPE (Archives d’études de sols de la ville de Constantine. Période: 1970–2010, Unpublished Internal reports. Laboratoire des Travaux Publics de l’EstGoogle Scholar
  61. Machane D (2003) Analyse et gestion du risque de glissement de terrain dans la ville de Constantine (Algérie). Mém. Post-grade diss., CERG, 2003, Geneva University, 70 pGoogle Scholar
  62. Machane D, Bouhadad Y, Cheikhlounis G, Chatelain JL, Oubaiche EH, Abbes K, Guillier B, Bensalem R (2008) Examples of geomorphologic and geological hazards in Algeria. Nat Hazards 45:295–308CrossRefGoogle Scholar
  63. Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435. doi: 10.1007/s11069-008-9230-x CrossRefGoogle Scholar
  64. Marmi R, Guiraud R (2006) End Cretaceous to recent polyphased compressive tectonics along the ‘Môle Constantinois’ and foreland (NE Algeria). Afr Earth Sci 45(1):123–136CrossRefGoogle Scholar
  65. MATE/MATL (1999) Plan de Prévention des Risques (PPR): Risques de Mouvements de terrain, Ministère de l’Aménagement du Territoire et de l’Environnement (MATE), Ministère de l’Equipement des Transports et du Logement (METL), Paris. La Documentation Française, ParisGoogle Scholar
  66. Mathew J, Jha VK, Rawa GS (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Sci 92(5):628–638Google Scholar
  67. Mattauer M (1958) Etude géologique de l’Ouarsenis oriental (Algérie). Publ Serv Carte géol Algérie, N.S. Bull. 17, p 534Google Scholar
  68. Nandi A, Shakoor A (2010) Application of logistic regression model for slope instability prediction in Cuyahoga River Watershed, Ohio, USA. Georisk 1:12Google Scholar
  69. Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191CrossRefGoogle Scholar
  70. O.N.M (2012) The hydrometeorological data of Ain El Bey station for a time-period of 32 years (1980–2012), National office of meteorological (ONM)Google Scholar
  71. Paulsen S, Krauter E, Hanisch J (1998) Glissements de terrain dans la ville de Constantine (Algérie). Rapport final Inst Fédér Géosc Res Nat HanovreGoogle Scholar
  72. Pincent B, Bougdal R, Panet M, Bentabet A (2008) Le pont Sidi Rached à Constantine (Algérie): une culée dans un grand glissement de terrain. Bull Serv Geol Algeria 19(3):197–215Google Scholar
  73. Pradhan B, Lee S (2010a) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Modelling Softw 25:747–759Google Scholar
  74. Pradhan B, Sezer AE, Gokceoglu C, Buchroithner MF (2010b) Land- slide susceptibility mapping by neurofuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12):4164–4177. doi: 10.1109/TGRS.2010.2050328 CrossRefGoogle Scholar
  75. Remondo J, Gonzàlez-Diez A, Dìaz de Teràn JR, Cendrero A (2003) Landslides susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba Valley, Guipùzcoa (Spain). Nat Hazards 30:267–279CrossRefGoogle Scholar
  76. RGPH (2008) 5ème Recensement de la Population et de l’Habitat en Algérie de l’Office National des Statistiques. ONS, Avril 2008Google Scholar
  77. Riheb H, Abd errahmane B, Yacine L, Mustapha B, Abd El Madjid Cc, Abdeslem D (2012) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302(2013):224–237Google Scholar
  78. Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2:61–69CrossRefGoogle Scholar
  79. Saldivar-Sali A, Einstein HH (2007) A landslide risk rating system for Baguio, Philippines. Eng Geol 91(2–4):85–99CrossRefGoogle Scholar
  80. Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds) Landslides: investigation and mitigation. Transport research board special report, vol 247, pp 129–177Google Scholar
  81. Stephen G Vans (1998) Les glissements de terrain dans la ville de Constantine, Algérie: géologie, géotechnique et travaux de correction potentielle. Rapport d’expertise Commission geologique du CanadaGoogle Scholar
  82. Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679CrossRefGoogle Scholar
  83. Terlien MTJ, Van Asch ThWJ, Van Westen CJ (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrar A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, London, pp 57–77CrossRefGoogle Scholar
  84. Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59. doi: 10.1016/j.geomorph.2007.02.020 CrossRefGoogle Scholar
  85. URBACO (2007) Levé de terrain à l’échelle de 1/2000 de la ville de ConstantineGoogle Scholar
  86. Van den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhov L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410CrossRefGoogle Scholar
  87. Van Westen CJ (1993) Application of Geographic Information Systems to landslide hazard zonation. ITC publication, vol. 15. International Institute for Aerospace and Earth Resources Survey, Enschede, p 245Google Scholar
  88. Van Westen CJ (1997) Statistical landslide hazar analysis. ILWIS 2.1 for Windows application guide. ITC publication, Enschede, The Netherlands, pp 73–84Google Scholar
  89. Van Westen CJ (2000) The modeling of landslide hazards using GIS. Surv Geophys 21:241e255Google Scholar
  90. Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86(2):404–414CrossRefGoogle Scholar
  91. Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419CrossRefGoogle Scholar
  92. Van Westen CJ, Van Asch Th WJ, Soeters R (2006) Landslide hazard and risk zonation: why is it still so difficult? Bull Eng Geol Environ 65:167–184CrossRefGoogle Scholar
  93. Varnes DJ (1984) Landslide Hazard Zonation, a review of principles and practice. IAEG Commission on Landslides. UNESCO, Paris, p 63Google Scholar
  94. Vila JM (1977) Carte géologique de Constantine au 1/200000èmeGoogle Scholar
  95. Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Ph.D thesis. Paris VI UnivGoogle Scholar
  96. Ward TJ, Li RM, Simons DB (1981) Use of a mathematical model for estimating potential landslide sites in steep forested drainage basins. IAHS Publ 132:21–41Google Scholar
  97. Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull As Eng Geol 21(3):337–342Google Scholar
  98. Wu WM, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110 through GIS-based hazard zonation. Geol Rundsch 86(2):404–414Google Scholar
  99. Wu S, Shi L, Wang R, Tan C, Hu D, Mei Y, Xu R (2001) Zonation of the landslide hazard in the forereservoir region of the three gorges project on the Yangtze River. Eng Geol 59:51–58. doi: 10.1016/S0013-7952(00)00061-2 CrossRefGoogle Scholar
  100. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparison of results and confirmations. Catena 72:1–12CrossRefGoogle Scholar
  101. Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41:201–226CrossRefGoogle Scholar
  102. Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266. doi: 10.1016/j.enggeo.2005.02.002 CrossRefGoogle Scholar
  103. Yilmaz I (2008) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 35(2009):1125–1138Google Scholar
  104. Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306. doi: 10.1007/s10064-009-0185-2 CrossRefGoogle Scholar
  105. Yilmaz I (2010) The effect of the sampling strategies on the landslide susceptibility mapping by Conditional Probability (CP) and Artificial Neural Networks (ANN). Environ Earth Sci 60(3):505–519CrossRefGoogle Scholar
  106. Yin KL and Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of 5th international symposium on landslides, Lausanne, Switzerland, vol 2, pp 1269–1272Google Scholar
  107. Zezere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in area north of Lisbon (Portugal). Nat Hazards and Earth Syst Sci 2:73–82CrossRefGoogle Scholar
  108. Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68:373–386Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hamid Bourenane
    • 1
    • 2
  • Youcef Bouhadad
    • 1
    • 2
  • Mohamed Said Guettouche
    • 2
  • Massinissa Braham
    • 1
    • 2
  1. 1.CGSNational Center of Applied Research in Earthquake EngineeringHussein DeyAlgeria
  2. 2.FSTGATUniversity of Sciences and Technology Houari Boumerdiene Bab Ezzouar (USTHB)El AliaAlgeria

Personalised recommendations