Space–time prediction of rainfall-induced shallow landslides through a combined probabilistic/deterministic approach, optimized for initial water table conditions

  • G. Grelle
  • M. Soriano
  • P. Revellino
  • L. Guerriero
  • M. G. Anderson
  • A. Diambra
  • F. Fiorillo
  • L. Esposito
  • N. Diodato
  • F. M. Guadagno
Original Paper


In landslide-prone areas the magnitude of events is related to recurring rainfall intensity. In a large sector of the Sannio Apennines (Southern Italy), predictive mapping of recurrent shallow landslides was undertaken by combining deterministic and probabilistic predictive approaches. This, with the aim to minimize the negative influence of the uniform distribution of the initial water table depth in steady condition that usually influence the theoretical instability resulting from the application of methods for large-scale estimation. The deterministic approach was performed by means of the Transient Rainfall Infiltration and Grid-based Regional Slope-stability model to obtain triggering maps in multi-temporal transient pore-water pressures. The optimized physical modeling was validated by back-analysis on large-magnitude landslide events which occurred in 2003 by means of the introduction of two cross-mapping correlation indexes. Subsequently, different predictive scenarios were proposed for different probabilistic return periods of the rainstorm events. The output data permitted the definition of a linear log regression curve to estimate the theoretical instability of the study area. This curve is defined as a function of cumulative precipitation, duration and return periods of the possible rainfall events.


Shallow landslides TRIGRS-code Initial condition Rainfall Southern Italy 


  1. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  2. Baron I, Cilek V, Krejci O, Melichar R, Hubatka F (2004) Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, outer Western Carpathians (Czech Republic). Nat Hazards Earth Syst Sci 4:549–562CrossRefGoogle Scholar
  3. Baum RL, Savage WZ, Godt JW (2002) TRIGRS-A Fortran program for transient rainfall infiltration and gridbased regional slope-stability analysis. USGS open-file report, 02–424Google Scholar
  4. Baum RL, Godt JW, Coe JA (2011) Assessing susceptibility and timing of shallow landslide and debris flow initiation in the Oregon Coast Range, USA. In: 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Padua, Italy, 14–17 June 2011, pp 825–834Google Scholar
  5. Calcaterra D, Palma B, Parise M (2003) Combining historical and geological data for the assessment of the landslide hazard: a case study from Campania, Italy. Nat Haz Earth Syst Sci 3(1–2):3–16CrossRefGoogle Scholar
  6. Carman P (1939) Permeability of the saturated sands, soils and clay. J Agric Sci 29:263–273CrossRefGoogle Scholar
  7. Cerda A, Garcia-Fayos P (1997) The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology 18(2):77–90CrossRefGoogle Scholar
  8. Coe JA, Michael JA, Crovelli RA, Savage WZ, Laprade WT, Nashem WD (2004a) Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurence, Seattle, Washington. Environ Eng Geosci 10(2):103–122CrossRefGoogle Scholar
  9. Coe JA, Godt JW, Baum RL, Bucknam RC, Michael JA (2004b) Landslide susceptibility from topography in Guatemala. Landslides: evaluation and stabilization. In: Lacerda WA, Ehrlich M, Fontura SAB, Sayão ASF (eds)©2004 Taylor & Francis Group, London, vol 1, pp 69–78. ISBN:0415356652Google Scholar
  10. Coe JA, Kinner DA, Godt JW (2008) Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology 96(2008):270–297CrossRefGoogle Scholar
  11. Crovelli RA, Coe JA (2009) Probabilistic estimation of numbers and costs of future landslide in the San Francisco Bay region. Georisk 3(4):206–223Google Scholar
  12. de Luca Tupputi Schinosa F, Stelitano S, Calcaterra D (2010) Susceptibility assessment for weathering-related landslides using a physically-based model. A case study from Mt. Poro (Calabria, Italy). Proceedings of the 11th IAEG congress, 5–10 September 2010, Auckland, New Zealand. Taylor & Francis Group, London, UK, pp 983–990. ISBN:978-0-415-60034-7Google Scholar
  13. Del Prete M, Guadagno FM, Hawkins B (1998) Preliminary report on the landslides of 5 May 1998, Campania, southern Italy. Bull Eng Geol Environ 57:113–129CrossRefGoogle Scholar
  14. Doglioni A, Fiorillo F, Guadagno FM, Simeone V (2012) Evolutionary polynomial regression applied to rainfall triggered landslide reactivation alert. Landslide 9(1):53–62CrossRefGoogle Scholar
  15. Donnarumma A, Revellino P, Guerriero L, Grelle G, Guadagno FM (2013) Failure analysis of shallow landslide using a three parameter Weibull distribution of slope angle. Rend Online Soc Geol Italy 24:110–112Google Scholar
  16. El-Daly AA, Farag NO (2006) Hydraulic conductivity: comparison between field testing, indirect techniques. Proc ASCE GeoCongr 2006 Atlanta 187(16):1–6CrossRefGoogle Scholar
  17. Fiorillo F, Guadagno FM (2007) Hydrological conditions leading to shallow landslides in the Sannio area (Southern Italy). In: Proceedings of International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp 331–339Google Scholar
  18. Fiorillo F, Revellino P (2006) Le condizioni idrologiche che determinano lo sviluppo delle frane superficiali nell’area sannita: gli esempi del gennaio 2003 e del marzo 2005. Giornale di Geologia Applicata 3:129–136Google Scholar
  19. Fiorillo F, Simeone V (2004) Analysis of rainfall in landslide activation during January–February 2003 in Central-South-Eastern Italy. In: Morell M (ed) Proceedings of the BALWOIS international conference on water observation and information systems for decision support. Ohrid, Republic of MacedoniaGoogle Scholar
  20. Frattini P, Crosta C, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 100:62–72CrossRefGoogle Scholar
  21. Fridman AE (2012) The quality of measurements. A metrological reference. Springer, Berlin 212CrossRefGoogle Scholar
  22. Galeandro A, Simunek J, Simeone V (2013) Analysis of rainfall infiltration effects on the stability of pyroclastic soil veneer affected by vertical drying shrinkage fractures. Bull Eng Geol Environ 72. doi: 10.1007/s10064-013-0492-5; ISSN:1435-9529 (Print) 1435-9537 (Online)
  23. Glade T (2000) Modelling landslide triggering rainfalls in different regions in New Zeland the soil water status model. Zeitschrift fur Geomorphologie 122:63–84Google Scholar
  24. Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessment in GIS framework. Eng Geol 102(3–4):214–226CrossRefGoogle Scholar
  25. Grelle G, Guadagno FM (2010) Shear mechanisms and viscoplastic effects during impulsive shearing. Géotechnique 60(2):91–103CrossRefGoogle Scholar
  26. Grelle G, Revellino P, Donnarumma A, Guadagno FM (2011) Bedding control on landslides: a methodological approach for computer-aided mapping analysis. Nat Hazards Earth Syst Sci 11:1395–1409CrossRefGoogle Scholar
  27. Guadagno F, Forte R, Revellino P, Fiorillo F, Focareta M (2005) Some aspects of the initiation of debris avalanches in the Campania Region: the role of morphological slope discontinuities and the development of failure. Geomorphology 66:237–254CrossRefGoogle Scholar
  28. Guadagno FM, Focareta M, Revellino P, Bencardino M, Grelle G, Lupo G, Rivellini G (2006) Carta delle frane della provincia di Benevento. Sannio University Press, Benevento, pp 1–77Google Scholar
  29. Guadagno FM, Revellino P, Grelle G, Lupo G (2008) Structurally-controlled earth flows in Campania Apennines (Southern Italy). Landslides and engineered slopes. From the past to the future. In: Chen et al (eds). Proceedings of the 10th international symposium on landslides and engineered slopes, 30 June–4 July 2008, Xi’an, China, vol I. Taylor and Francis Group, London, pp 365–371Google Scholar
  30. Guerriero L, Revellino P, Coe JA, Focareta M, Grelle G, Albanese V, Corazza A, Guadagno FM (2013) Multi-temporal maps of the Montaguto earth flow in southern Italy from 1954 to 2010. J Maps 9:135–145CrossRefGoogle Scholar
  31. Guzzetti F, Cardinali M, Reichenbach P (1994) The influence of structural setting and inventory of landslides type and pattern. Environ Eng Geosci 18:623–633Google Scholar
  32. Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2(4):531–555Google Scholar
  33. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  34. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment of shallow landslide at basin scale. Geomorphology 72(1–4):272–299CrossRefGoogle Scholar
  35. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRefGoogle Scholar
  36. Kim D, Im S, Lee SH, Hong Y, Cha KS (2010) Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. J Mt Sci 7:83–91CrossRefGoogle Scholar
  37. Kozeny J (1927) Uber kapillare Leitung der Wasser in Boden. Sitzungs-ber Akad Wiss Wien 136:271–306Google Scholar
  38. Liao Z, Hong Y, Kirschbaum D, Adler RF, Gourley JJ, Wooten R (2011) Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Nat Hazards 58:325–339CrossRefGoogle Scholar
  39. Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171CrossRefGoogle Scholar
  40. Montrasio L, Valentino R (2008) A model for triggering mechanisms of shallow landslides. Nat Hazards Earth Syst Sci 8:1149–1159CrossRefGoogle Scholar
  41. Morgenstern NR, Cruden DM (1977) Description and classification of geotechnical complexities. Proceedings of international symposium on the geotechnics of structurally complex formations. Italian Geotech Soc 2:195–204Google Scholar
  42. Ng CWW, Shi Q (1998) A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput Geotech 22(1):1–28CrossRefGoogle Scholar
  43. Pack RT, Tarboton DG, Goodwin CN (1998) Terrain stability mapping with SINMAP, technical description and users guide for version 1.00; Report number 4114-0, Terratech Consulting Ltd., Salmon Arm, BC, Canada. (
  44. Pack RT, Tarboton DG, Goodwin CN (2001) Assessing terrain stability in a GIS using SINMAP, in 15th annual GIS conference, GIS 2001, Vancouver, British Columbia, February 19–22Google Scholar
  45. Rahardjo H, Ong TH, Rezaur R, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng 133(12):1532–1543CrossRefGoogle Scholar
  46. Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans ASAE 25(5):1316–1320, 1328Google Scholar
  47. Revellino P, Guadagno FM, Hungr O (2008) Morphological methods and dynamic modelling in landslide hazard assessment of the Campania Apennine carbonate slope. Landslides 5:59–70CrossRefGoogle Scholar
  48. Revellino P, Grelle G, Donnarumma A, Guadagno FM (2010) Structurally controller earth flows of the Benevento province (Southern Italy). Bull Eng Geol Environ 69(3):487–500CrossRefGoogle Scholar
  49. Salciarini D, Godt JW, Savage WZ, Baum RL, Conversini P (2008) Modeling landslide recurrence in Seattle, Washington, USA. Eng Geol 102:227–237CrossRefGoogle Scholar
  50. Sorbino G, Sica C, Cascini L (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53:313–332CrossRefGoogle Scholar
  51. Trani LDO, Idraratna B (2010) The use of particle size distribution by surface area method in predicting the saturated hydraulic conductivity of graded granular soils. Géotechnique 60(12):957–962CrossRefGoogle Scholar
  52. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131CrossRefGoogle Scholar
  53. Varnes DJ (1984) Landslides hazards zonation: a review of principles and practice. UNESCO, ParisGoogle Scholar
  54. Wilson AJ, Petley DN, Murphy W (2003) Down-slope variation in geotechnical parameters and pore fluid control on a large-scale Alpine landslide. Geomorphology 54(1–2):49–62CrossRefGoogle Scholar
  55. Wu W, Sidle RC (1995) A distributed slope stability model for steep forested watersheds. Water Resour Res 31(8):2097–2110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Grelle
    • 1
  • M. Soriano
    • 1
  • P. Revellino
    • 1
  • L. Guerriero
    • 1
  • M. G. Anderson
    • 2
  • A. Diambra
    • 2
  • F. Fiorillo
    • 1
  • L. Esposito
    • 1
  • N. Diodato
    • 1
    • 3
  • F. M. Guadagno
    • 1
  1. 1.Department of Science and TechnologiesUniversity of SannioBeneventoItaly
  2. 2.Department of Civil EngineeringUniversity of BristolBristolUK
  3. 3.Met European Research ObservatoryHyMex–GEWEX-Experiment (WCRP)BeneventoItaly

Personalised recommendations