Skip to main content

Advertisement

Log in

Geotechnical map of Holocene alluvial soil deposits in the metropolitan area of Granada (Spain): a GIS approach

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The results of a geotechnical research on Holocene alluvial deposits in 14 municipalities of the Granada basin are presented, and a procedure to draw a geotechnical map of foundation conditions, using ArcGIS 9.3 (ESRI 2009) is described. Three different alluvial soil units were distinguished: (1) cohesive soils; (2) cohesive and fine granular soil; (3) coarse granular soil, based on their properties concerning grain size, bulk density, cohesion, internal friction angle, and NSPT value. The actual building structures have predominantly shallow foundations. The definition of the minimum depth to actual foundation level was based on the analysis of thickness of disturbed soils, man-made fillings, depth to the water table and bearing capacity. The depth to actual foundation levels varies from 0.5 to 4 m in the study area. Concerning the ground, the geotechnical data compiled on foundation conditions show a high heterogeneity expressed by the spatial distribution of the basic properties in the three distinguished units of cohesive, cohesive and fine-granular, and coarse granular soils, respectively. The fine-grained alluvial soil units (cohesive) have a low bearing capacity varying between 40 and 100 kPa and are associated with a shallow water table appearing near the surface. In contrast, across the wide extension of the coarse-grained alluvial soil unit, a bearing capacity ranging from 60 to 300 kPa is determined; this unit is associated with a deep water table appearing at more than 40 m below the surface. The usefulness of the obtained geotechnical map of foundation conditions extends to the analysis of further alternatives of urban expansion and for the delimitation of future trends for of land-use-development processes in the metropolitan area of Granada, mainly at local and regional scales.

Résumé

Les résultats d'une étude géotechnique sur des alluvions holocènes dans 14 communes du bassin de Grenade sont présentés, et une procédure de dessiner une carte géotechnique des conditions de fondation, en utilisant ArcGIS 9.3 (ESRI 2009) est décrite. Trois unités de sols alluviaux différents ont été distingués: (1) des sols cohésifs, (2) le sol granulaire cohésif et fine, (3) sol granulaire grossier, en fonction de leurs propriétés relatives à la taille des grains, la densité, la cohésion, angle de frottement interne et la valeur NSPT. Les structures de bâtiments réels ont des fondations en majorité peu profondes. La définition de la profondeur minimale au niveau de la fondation réelle est basée sur l'analyse de l'épaisseur des sols perturbés, les plombages d´origine humaine, la profondeur de la nappe phréatique et la capacité portante. La profondeur au niveau des fondations réelles varie de 0,5 à 4 m dans la zone d'étude. En ce qui concerne le sol, les données géotechniques recueillies sur les conditions de fondation montrent une grande hétérogénéité exprimée par la distribution spatiale des propriétés fondamentales dans les trois unités distinguées de sols cohésif, cohésive et granulaire cohésif, et grossier, respectivement. Les unités de sols alluviaux à grains fins (cohésif) ont une faible capacité portante variant entre 40 et 100 kPa et sont associées à une nappe phréatique peu profonde apparaissant près de la surface. En revanche, à travers la large extension de l'unité de sol alluvial à gros grains, une capacité de charge allant de 60 à 300 kPa est déterminée, jusqu'à ce que cette unité soit associée à une nappe d'eau profonde figurant à plus de 40 m sous la surface. En revanche, de l'autre côté de la grande extension de l'unité d'alluvions à gros grains, une capacité de charge comprise entre 60 et 300 kPa est déterminée; cette unité est associée à une nappe d'eau profonde apparaissant à plus de 40 m au-dessous de la surface. L'utilité de la carte géotechnique obtenue montrant les conditions de fondation s'étend à l'analyse d'autres alternatives de l'expansion urbaine et de la délimitation des tendances futures pour des procédés d'affectation et la planification du territoire dans la région métropolitaine de Grenade, principalement à l'échelle locale et régionale

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The “Vega” of Granada is an area of traditional fertile farming land surrounding the city of Granada. The geotechnical properties and foundation conditions of the Holocene alluvial soils of the “Vega”of Granada (Spain) are very heterogeneous, not only because of the variability of the lithological and granulometrical distribution, but also because of the changeable setting of the water table in the area.

References

  • BOE (2002) Real Decreto 997/2002, de 27 de septiembre, por el que se aprueba la Norma de Construcción Sismorresistente: parte general y edificación (NCSR-02). Boletín Oficial del Estado, No. 244: pp 35898–35966, Madrid, Spain

  • BOE (2006) Real Decreto 314/2006 por el que se aprueba el Código Técnico de la Edificación CTE. Documento Básico ‘‘SE-C. Seguridad Estructural: Cimientos, Real Decreto 314/2006 de 17 de Marzo: Boletín Oficial del Estado, No. 74, pp 11816–11831, Madrid, Spain

  • BOE (2008b) Real Decreto 1247/2008 por el que se aprueba la instrucción de hormigón estructural (EHE-08): Boletín Oficial del Estado, No. 203, pp 35176–35178, Madrid, Spain

  • BOE (2008c) Corrección de errores del Real Decreto 1247/2008 por el que se aprueba la instrucción de hormigón estructural (EHE-08): Boletín Oficial del Estado, No. 309, pp 51901–51908, Madrid, Spain

  • Castillo Martín A (1986) Estudio hidroquímico de la Vega de Granada. Universidad de Granada. IGME, Granada

    Google Scholar 

  • Chacón J, Casado CL, Rodríguez-Moreno I, Irigaray C (1988) Geotechnical site conditions and seismic microzonation of the Granada basin (Spain). In: Carlos S. Oliveira (ed). Proc. ECE/UN Seminar on Prediction of Earthquakes: Occurrence and Ground Motion, 1, part. 3, pp 449–460. Lab. Nac.Eng.Civil. Lisbon, Portugal

  • Chacón J, Irigaray C, Boussouf S (1992) Caracterización geotécnica de la ubicación de un vertedero comarcal de residuos sólidos urbanos en la Depresión de Granada. III Congreso Geológico de España. Actas, tomo 2: 415–419. ISBN: 84-600-8130-3. Salamanca, Spain

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: Landslides and geographical information systems. Bull Eng Geol Environ 65(4): 341–411. Springer Verlag

    Google Scholar 

  • Chacón J, Irigaray C, El Hamdouni R, Valverde-Palacios I, Valverde-Espinosa I, Fernández P, Calvo FJ, Jiménez-Perálvarez J, Chacón E, Lamas F, Garrido J (2012) Engineering geology of Granada and its metropolitan area (Andalusia, Spain). Environ Eng Geosci 18(3):217–260

    Article  Google Scholar 

  • Cheddadi A (2001) Caracterización sísmica del subsuelo de la ciudad de Granada mediante el análisis espectral del ruido de fondo sísmico y la exploración de onda de cizalla horizontales. Tesis Doctoral. Instituto Andaluz de Geofísica y Prevención de Desastres Sísmicos, PhD. Universidad de Granada

  • Dabrio C J, Fernández J, Peña JA, Ruiz Bustos A, Sanz De Galdeano C (1978) Rasgos sedimentarios de los conglomerados miocánicos del borde Noreste de la Depresión de Granada. Estudios Geológicos (34): 89–97. CSIC. Madrid (Spain)

  • Deffontaines B, Liu C, Angelier J, Lee C, Sibuet J, Tsai Y et al (2001) Preliminary neotectonic map of onshore-offshore Taiwan. Terr Atmospheric Ocean Sci 12(Suppl.):339–349

    Google Scholar 

  • DIPGRA-ITGE (1990) Atlas Hidrogeológico de la Provincia de Granada. Madrid: Excma. Diputación de Granada e Instituto Tecnológico-GeoMinero de España

  • El May M, Dlala M, Chenini I (2010) Urban geological mapping: geotechnical data analysis for rational development planning. Eng Geol 116(1–2):129–138

    Article  Google Scholar 

  • ESRI (2009) ArcGIS 9.3. Environmental Systems Research Institute, Inc (ESRI) http://www.esri.com/

  • Galindo-Zaldívar J, Gil AJ, Borque MJ, González Lodeiro F, Jabaloy A, Marín-Lechado C (2003) Active faulting in the internal zones of the central Betic Cordilleras (SE Spain). J Geodyn 36:239–250

    Article  Google Scholar 

  • García Dueñas V (1969) Consideraciones sobre las series del Subbético Interno que rodean la Depresión de Granada (Zona subbética). Acta Geológica Hispánica 4(1):9–13

    Google Scholar 

  • Hansen JB (1970) A revised and extended formula for bearing capacity. Geotecnisk Inst

  • Hernández Del Pozo J (1998) Análisis Metodológico de la Cartografía Urbana Aplicada a la Ciudad de Granada. PhD. Universidad de Granada, Granada

    Google Scholar 

  • Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106:211–232

    Article  Google Scholar 

  • Hutchinson MF (1993) Development of a continent-wide DEM with applications to terrain and climate analysis. In: Goodchild MF et al (eds) Environmental modeling with GIS. Oxford University Press, Nueva York, pp 392–399

    Google Scholar 

  • Hutchinson MF, Dowling TI (1991) A continental hydrological assessment of a new grid-based digital elevation model of Australia. Hydrol Process 5:45–58

    Article  Google Scholar 

  • IGME-FAO (1972) Utilización de las aguas subterráneas para la mejora del regadío en La Vega de Granada (informe n° 2). Proyecto piloto de utilización de aguas subterráneas para el desarrollo agrícola de la cuenca del Guadalquivir

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (Southern Spain). Nat Hazards 41:61–79

    Article  Google Scholar 

  • Irigaray C, El Hamdouni R, Jiménez-Perálvarez JD, Fernández P, Chacón J (2012) Spatial stability of slope cuts on rock massifs using GIS technology and probabilistic analysis. Bull Eng Geol Environ 71(3):569–578. doi:10.1007/s10064-011-0414-3

    Article  Google Scholar 

  • Jiménez-Perálvarez JD, Irigaray C, Hamdouni RE, Chacón J (2011) Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70(2):265–277

    Article  Google Scholar 

  • Junta de Andalucía (2011) Consejería de Medio Ambiente. Climatological information, year 2011. http://www.juntadeandalucia.es/medioambiente/site/web/menuitem.a5664a214f73c3df81d8899661525ea0/?vgnextoid=d33e2499d8cb6210VgnVCM1000001325e50aRCRD&vgnextchannel=fc8c9e6986650210VgnVCM1000001325e50aRCRD&lr=lang_es&vgnsecondoid=c33e2499d8cb6210VgnVCM1000001325e50a

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58(3–4):313–336

    Article  Google Scholar 

  • Meyerhof GG (1963) Some recent research on the bearing capacity of foundations. The ultimate bearing capacity of foundations. Can Geotech 1(1):16–26

    Article  Google Scholar 

  • Mohammed AMS, Houmadi Y, Bellakhdar K (2010) Geotechnical risks map of Saïda city, Algeria. Electron J Geotech Eng 15(E):403–414

    Google Scholar 

  • Morales J, Vidal F, De Miguel F, Alguacil G, Posadas AM, Ibañez JM (1990) Basement structure of the Granada Basin. Betic Cordillera (Southern Spain). Tectonophysics 177:337–348

    Article  Google Scholar 

  • Rauch JN (2011) Global distributions of fe, al, cu, and zn contained in earth’s derma layers. J Geochem Explor 110(2):193–201

    Article  Google Scholar 

  • Robinson TP, Metternicht G (2006) Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agric 50(2):97–108

    Article  Google Scholar 

  • Rodriguez-Fernandez J, Sanz de Galdeano C (2006) Late orogenic intramontane basin development: the Granada basin, Betics (southern Spain). Basin Res 18:85–102

    Article  Google Scholar 

  • Sanz de Galdeano C, Peláez A, López-Garrido AC (2001) La cuenca de Granada: Estructura, Tectónica Activa, Sismicidad. CSIC- Universidad de Granada, Geomorfología y dataciones existentes. ISBN 84-699-5561-6

    Google Scholar 

  • Sanz de Galdeano C, Shanov S, Galindo-Zaldívar J, Radulov A, Nikolov G (2010) A new tectonic discontinuity in the Betic Cordillera deduced from active tectonics and seismicity in the Tabernas Basin. J Geodyn 50:57–66

    Article  Google Scholar 

  • Schmertmann JH (1975) Measurement of “in situ” shear strength. Proceedings of Conference on In Situ Measurement of Soil Properties, ASCE, New York, vol II, pp 57–138. USA

  • Terzaghi K (1943) Theoretical soil mechanics. John Wiley and Sons, New York

    Book  Google Scholar 

  • Terzaghi K, Peck RB (1948) Soil mechanics in engineering practice. J. Wiley & Sons Inc., New York

    Google Scholar 

  • Valverde-Palacios I (2010) Cimentaciones de edificios en condiciones estáticas y dinámicas. Casos de estudio al W de la ciudad de Granada. Universidad de Granada (España). Tesis Doctoral

  • Valverde-Palacios I, Chacón J, Valverde-Espinosa I, Irigaray C (2012) Foundation models in seismic areas: four case studies near the city of Granada (Spain). Eng Geol 131–132:57–69

    Article  Google Scholar 

  • Vidal F (1986) Sismotectónica de la región Béticas- Mar de Alborán. Universidad de Granada (España). Tesis Doctoral

  • Wagner AA (1957) The use of the Unified Soil Classification System by the Bureau of 1599 Reclamation. In: Proceedings 4th International Conference Soil Mechanics Fo undation 1600 Engineering Vol I, pp 125–134. London. U.K

  • Watson DF, Philip GM (1985) A refinement of inverse distance weighted interpolation. Geoprocessing 2:315–327

    Google Scholar 

  • Yilmaz I (2008) A case study for mapping of spatial distribution of free surface heave in alluvial soils (Yalova, Turkey) by using GIS software. Comput Geosci 34(8):993–1004

    Article  Google Scholar 

  • Zhu R, Liu B (2005) Application of GIS technology to geotechnic engineering in the Yangtze River basin. Yanshilixue Yu Gongcheng Xuebao/Chinese J Rock Mech Eng 24(SUPPL. 2):5580–5584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Valverde-Palacios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valverde-Palacios, I., Valverde-Espinosa, I., Irigaray, C. et al. Geotechnical map of Holocene alluvial soil deposits in the metropolitan area of Granada (Spain): a GIS approach. Bull Eng Geol Environ 73, 177–192 (2014). https://doi.org/10.1007/s10064-013-0540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0540-1

Keywords

Mots clés

Navigation