Skip to main content
Log in

Estimation of soil properties of shallow landslide source areas by dynamic penetration tests: first outcomes from Northern Tuscany (Italy)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In Northern Tuscany (Italy) rapid, shallow landslides often cause casualties and severe damage. Aimed at contributing to the characterisation of the source areas of rapid, shallow landslides, this paper deals with the geotechnical parameterisation of the mainly involved soil by means of dynamic penetration tests. The source areas are usually located in difficult access sites, where boring and undisturbed sampling are very hard and onerous. Therefore, the results of 177 dynamic penetration tests were analysed, including dynamic probing (DP) tests and standard penetration tests (SPT). The results of these tests were related to relative density D r and friction angle Φ′ of the soil by means of empirical equations. The distribution and variability of these parameters were analysed and related to soil type, test type and probing depth. The D r and Φ′ values coming from the DP and SPT tests were found to be comparable. The Φ′ values coming from DP tests and direct shear tests showed an acceptable correlation, confirming the utility of the DP tests. The DP test can thus be an effective tool in the estimation of the properties of potentially unstable soil slope covers.

Résumé

Dans la Toscane septentrionale (Italie) des glissements de terrain superficiels rapides provoquent assez souvent de considérables dégâts et de victimes. Ces glissements s’amorcent fréquemment dans les zones où le difficile accès ne permet pas de recueillir des échantillons intacts pour être testés en laboratoire. Ainsi pour la caractérisation géotechnique des terrains ont été utilisés les résultats de 177 tests de pénétration dynamique, ci-inclus les Dynamic Probing Tests (DP) et les Standard Penetration Tests (SPT). Du résultat de ces tests, par des corrélations empiriques ont été estimées les valeurs moyennes de la densité relative et l’angle de frottement du terrain étudié. Distribution et variabilité des résultats obtenus ont été analysées et corrélées avec le type de sol et le type et la profondeur de la preuve. L’étude a révélé que les valeurs moyennes de la densité relative et l’angle de frottement, obtenues par des tests DP, sont comparables à ceux obtenus à partir de SPT à la même profondeur. De plus, les angles de frottement, obtenues par de tests DP, montrent une bonne corrélation linéaire avec ceux déterminés par des essais de cisaillement directs réalisés en laboratoire sur des échantillons intacts. En conclusion, les comparaisons montrent que le pénétromètre dynamique continu peut être considéré comme un instrument utile pour l’estimation de certains paramètres géotechniques des sols en pentes potentiellement instables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • American Society for Testing and Materials (1996) Annual Book of ASTM Standards, Soil and Rock Construction, Section 4. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Bellotti R, Ghionna V, Jamiolkowski M, Lancellotta R, Manfredini G (1986) Deformation characteristics of cohesionless soils from in situ tests. In: Clemence SP (ed) Use of in situ tests in geotechnical engineering, geotechnical special publication no. 6, ASCE, pp 47–73

  • Blijenberg HR (1995) In-situ strength tests of coarse, cohesionless debris on scree slopes. Eng Geol 39:137–146. doi:10.1016/0013-7952(95)00011-4

    Article  Google Scholar 

  • Bolton MD (1986) The strength and dilatancy of sands. Geotechnique 36(1):65–78

    Article  Google Scholar 

  • Campbell RH (1975) Soil slip, debris flows, and rainstorms in the Santa Monica mountains and vicinity, southern California. US Geological Survey Professional Paper 851, p 51

  • Carmignani L, Lazzarotto A (2004) Geological Map of Tuscany (Italy), Regione Toscana, Special Edition for the IGC 32 Florence-2004

  • Carmignani L, Conti P, Cornamusini G, Meccheri M (2004) The internal Northern Apennines, the northern Tyrrhenian sea and the Sardinia-Corsica block. In: Crescenti V, D’Offizi S, Merlino S, Sacchi L (eds) Geology of Italy, Special Volume of the Italian Geological Society for the IGC 32 Florence-2004, pp 59–77

  • Casagli N, Dapporto S, Ibsen ML, Tofani V, Vannocci P (2006) Analysis of the landslide triggering mechanism during the storm of 20th–21st November 2000, in Northern Tuscany. Landslides 3:13–21. doi:10.1007/s10346-005-0007-y

    Article  Google Scholar 

  • Cestari (2005) Prove geotecniche in sito, 3rd edn. Geo-Graph, Segrate, Italy (in Italian)

  • Clayton CRI (1995) The standard penetration test (SPT): methods and use. Construction Industry Research and Information Association, Report 143. CIRIA, London, p 143

    Google Scholar 

  • Conti P, Lazzarotto A (2004) Geology of Tuscany: evolution of the state-of-knowledge presented by geological maps and the new geological map of Tuscany, 1:250,000 scale. In: Morini D, Bruni P (eds) The Regione Toscana Project of geological mapping: case histories and data acquisition. Regione Toscana—Servizio Geologico Regionale, Firenze, pp 33–50

    Google Scholar 

  • Corominas J, Remond J, Farias P, Estevao M, Zézere J, Díaz de Terán R, Dikau R, Schrott L, Moya J, González A (1996) Debris flow. In: Dikau R, Brunsden D, Schrott L, Ibsen ML (eds) Landslide recognition, identification, movement and causes. Wiley, Chichester, pp 161–180

    Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35(2–3):131–145. doi:10.1007/s002540050300

    Article  Google Scholar 

  • Crosta GB, Dal Negro P, Frattini P (2003) Soil slips and debris flows on terraced slopes. Nat Hazards Earth Sys Sci 3:31–42. doi:10.5194/nhess-3-31-2003

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, special report 247, Transportation Research Board, National Research Council, National Academy Press, Washington, pp 36–75

  • Cubrinovski M, Ishihara K (1999) Empirical correlation between SPT N-value and relative density for sandy soils. Soils Found 39(5):61–71

    Article  Google Scholar 

  • D’Amato Avanzi G, Giannecchini R, Puccinelli A (2004) The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in the northwestern Tuscany (Italy). Eng Geol 73:215–228. doi:10.1016/j.enggeo.2004.01.005

    Article  Google Scholar 

  • D’Amato Avanzi G, Falaschi F, Giannecchini R, Puccinelli A (2009) Soil slip susceptibility assessment using mechanical-hydrological approach and GIS techniques: an application in the Apuan Alps (Italy). Nat Hazards 50(3):591–603. doi:10.1007/s11069-009-9357-4

    Article  Google Scholar 

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Mazzali A, Saulle G (2013a) Remarks on the 25 October 2011 rainstorm in Eastern Liguria and Northwestern Tuscany (Italy) and the related landslides. Rendiconti Online Societa Geologica Italiana 24:76–78

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Puccinelli A (2013b) Fragility of territory and infrastructures resulting from rainstorms in northern Tuscany (Italy). In: Margottini C, Canuti P, Sassa k (eds) Risk assessment, management and mitigation. Landslide science and practice, vol 6. Springer, Heidelberg, pp 239–246. doi:10.1007/978-3-642-31319-6_33

  • De Mello VFB (1971) The standard penetration test. In: Proceeding of 4th American Conference. On Soil Mech Found Eng

  • De Vita P, Di Clemente E, Rolandi M, Celico P (2007) Engineering geological models of the initial landslides occurred on April 30th, 2006, at the mount di Vezzi (Ischia Island, Italy). Italian J Eng Geol Environ 2:119–141. doi:10.4408/IJEGE.2007-02.O-08

    Google Scholar 

  • Del Prete M, Guadagno FM, Hawkins AB (1998) Preliminary report on the landslides of 5 May 1998, Campania, southern Italy. Bull Eng Geol Environ 57(2):113–129. doi:10.1007/s100640050028

    Article  Google Scholar 

  • Ekanayake JC, Philipps CJ (2002) Slope stability thresholds for vegetated hillslopes: a composite model. Can Geotech J 39(4):849–862. doi:10.1139/t03-037

    Article  Google Scholar 

  • Ellen SD, Wieczorek GF (1988) Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay region, California. US Geological Survey Professional paper 1434, p 310

  • Giannecchini R (2006) Relationship between rainfall and shallow landslides in the southern Apuan Alps. Nat Hazards Earth Syst Sci 6:357–364. doi:10.5194/nhess-6-357-2006

    Article  Google Scholar 

  • Giannecchini R, D’Amato Avanzi G (2012) Historical research as a tool in estimating hydrogeological hazard in a typical small alpine-like area: the example of the Versilia River basin (Apuan Alps, Italy). Phys Chem Earth 49:32–43. doi:10.1016/j.pce.2011.12.005

    Article  Google Scholar 

  • Giannecchini R, Pochini A (2003) Geotechnical influence on soil slips in the Apuan Alps (Tuscany): first results in the Cardoso area. In: Proceedings of international conference on fast slope movements-prediction and prevention for risk mitigation (IC-FSM 2003), 11-13 May 2003, Naples, pp 241–245

  • Giannecchini R, Naldini D, D’Amato Avanzi G, Puccinelli A (2007) Modelling of the initiation of rainfall-induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quat Int 171–172:108–117. doi:10.1016/j.quaint.2007.01.011

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842. doi:10.5194/nhess-12-829-2012

    Article  Google Scholar 

  • Guadagno FM, Revellino P (2005) Debris avalanches and debris flows of the Campania Region (southern Italy). In: Jakob M, Hungr O (eds) Debris-flow hazard and related phenomena. Springer, Berlin, pp 489–518

    Chapter  Google Scholar 

  • Hatanaka M, Uchida A (1996) Empirical correlation between penetration resistance and internal friction angle of sandy soils. Soils Found 36(4):1–9

    Article  Google Scholar 

  • Hettiarachchi H, Brown T (2009) Use of SPT blow counts to estimate shear strength properties of soils: energy balance approach. J Geotech Geoenviron Eng 135(6):830–834. doi:10.1061/(ASCE)GT.1943-5606.0000016

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238. doi:10.2113/gseegeosci.7.3.221

    Google Scholar 

  • Il Rischio sismico in Toscana (2012) <http://www.rete.toscana.it/sett/pta/sismica/> (24 Feb 2012)

  • Japan Road Association (1990) Specifications for highway bridges. Part IV

  • Jibson RW (1989) Debris flows in southern Puerto Rico. In: Schultz AP, Jibson RW (eds) Landslide processes in Eastern North America and Puerto Rico, Geological Society of America, Special Paper 236, pp 29–55

  • Kokusho T, Tanaka Y, Tadashi K, Kouji K, Kouichi S, Shinji T, Shintaro A (1995) Case study of rock debris avalanche gravel liquefied during 1993 Hokkaido-Nansei-Oki earthquake. Soils Found 35:83–95

    Article  Google Scholar 

  • Kulhawy FH, Mayne PW (1990) Manual on estimating soil properties for foundation design. Electric Power Research Institute, Palo Alto

    Google Scholar 

  • Liao SSC, Whitman RV (1986) Overburden correction factors for SPT in sand. J Geotech Eng 112(3):373–377. doi:10.1061/(ASCE)0733-9410(1986)112:3(373)

    Article  Google Scholar 

  • Lo Presti D, Squeglia N (2008) Prove penetrometriche dinamiche. Hevelius Edizioni, Benevento (in Italian)

  • Lo Presti D, Squeglia N, Pallara O, Mensi E, Ferrini M (2007) Soil testing: a critical analysis in the framework of EC8 and OPCM 3274. Italian J Eng Geol Environ 1:49–68. doi:10.4408/IJEGE.2007-01.O-04

    Google Scholar 

  • Lo Presti D, Meisina C, Squeglia N (2009) Use of cone penetration tests for soil profiling. Italian Geotech J 2:29–51

    Google Scholar 

  • Meyerhof GG (1956) Penetration tests and bearing capacity of cohesionless soils. J Soil Mech Found Div 82(1):1–19

    Google Scholar 

  • Odebrecht E, Schnaid F, Rocha MM, Bernardes GP (2005) Energy efficiency for standard penetration test. J Geotech Geoenviron Eng 131(10):1252–1263. doi:10.1061/(ASCE)1090-0241(2005)131:10(1252)

    Article  Google Scholar 

  • Pagani Geotechnical Equipment (2012) DPSH Dynamic penetrometers (TG 63-100; TG 63-150). <http://www.pagani-geotechnical.com/index.php?id=67> (24 Feb 2012)

  • Pandeli E, Ferrini G, Lazzari D (1994) Lithofacies and petrography of the Macigno formation from the Abetone to the Monti del Chianti areas (Northern Apennines). Memorie della Società Geologica Italiana 48:321–329

    Google Scholar 

  • Parker ER, Jenny H (1945) Water infiltration and related soil properties as affected by cultivation and organic fertilization. Soil Sci 60:353–376

    Article  Google Scholar 

  • Peck RB, Hanson WE, Thornburn THE (1953) Foundation engineering. Wiley, New York

    Google Scholar 

  • Peck RB, Hanson WE, Thornburn THE (1974) Foundation engineering, 2nd edn. Wiley, New York

    Google Scholar 

  • Pierson TC, Costa JE (1987) A rheologic classification of subaerial sediment-water flows. In: Costa JE, Wieczorek GF (eds) Debris flows/avalanches: process, recognition, and mitigation, Reviews in Engineering Geology 7. Geological Society of America, Boulder, pp 1–12

    Chapter  Google Scholar 

  • Robertson PK (2009) Interpretation of cone penetration tests: a unified approach. Can Geotech J 46:1337–1355. doi:10.1139/T09-065

    Article  Google Scholar 

  • Robertson PK, Wride CE (1997) Cyclic liquefaction and its evaluation based on the SPT and CPT. In: Proceedings of the NCEER Workshop on evaluation of liquefaction. Resistance of soils, Salt Lake City, Technical Report NCEER-97-0022, National Centre of Earthquake Engineering Research, Buffalo, pp 41–87

  • Rogers DJ (2006) Subsurface exploration using the standard penetration test and the cone penetration test. Environ Eng Geosci 12(2):161–179. doi:10.2113/12.2.161

    Article  Google Scholar 

  • Schmertmann JH (1978) Use of SPT to measure dynamic soil properties? Yes, but…! Dyn Geotech Test ASTM SPT 654:341–355

    Article  Google Scholar 

  • Schnaid F (2009) In situ testing in geomechanics: the main tests. Taylor and Francis, New York, p 352

    Google Scholar 

  • Schnaid F, Odebrecht E, Rocha MM, Bernardes GP (2009) Prediction of soil properties from the concepts of energy transfer in dynamic penetration tests. J Geotech Geoenviron Eng 135(8):1092–1100. doi:10.1061/(ASCE)GT.1943-5606.0000059

    Article  Google Scholar 

  • Schwarz M, Preti F, Giadrossich F, Lehmann P, Or D (2010) Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecol Eng 36:285–291. doi:10.1016/j.ecoleng.2009.06.014

    Article  Google Scholar 

  • Seed HB, Tokimatsu K, Harder LF, Chung RM (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12):1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425)

    Article  Google Scholar 

  • Sivrikaya O, Toğrol E (2006) Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey. Eng Geol 86:52–69. doi:10.1016/j.enggeo.2006.05.002

    Article  Google Scholar 

  • Skempton AW (1986) Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotecnique 36(3):425–447. doi:10.1680/geot.1986.36.3.425

    Article  Google Scholar 

  • Squeglia N, Pallara O, Mensi E (2006) Caratterizzazione meccanica dei depositi di terreni mediante prove penetrometriche dinamiche. In: Proceeding of Incontro Annuale dei Ricercatori di Geotecnica 2006—IARG 2006, 26–28 June 2006, Pisa (in Italian)

  • Stefanoff G, Sanglerat G, Bergdahl U, Melzer KJ (1988) Dynamic probing (DP): international reference test procedure. In: Proceeding of 1st international symposium on penetration testing. Orlando 1, pp 53–70

  • Wang FW, Sassa K, Wang G (2002) Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan. Eng Geol 63(1–2):169–185. doi:10.1016/S0013-7952(01)00080-1

    Article  Google Scholar 

  • Wieczorek GF (1996) Landslide triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Special Report 247, Transportation Research Board, National Research Council, National Academy Press, Washington, pp 76–90

  • Youd TL, Idriss IM (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. J Geotech Geoenviron Eng 127(4):297–313. doi:10.1061/(ASCE)1090-0241(2001)127:4(297)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Susanna Duchi (Professional Geologist) for her contribution in data collecting, and to the anonymous referees, who have helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Galanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Amato Avanzi, G., Galanti, Y., Giannecchini, R. et al. Estimation of soil properties of shallow landslide source areas by dynamic penetration tests: first outcomes from Northern Tuscany (Italy). Bull Eng Geol Environ 72, 609–624 (2013). https://doi.org/10.1007/s10064-013-0535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0535-y

Keywords

Mots clés

Navigation