A method for cognitive 3D geological voxel modelling of AEM data

  • Flemming Jørgensen
  • Rasmus Rønde Møller
  • Lars Nebel
  • Niels-Peter Jensen
  • Anders Vest Christiansen
  • Peter B. E. Sandersen
Original Article


Airborne electromagnetic (AEM) data have proven successful for the purpose of near-surface geological mapping and are increasingly being collected worldwide. However, conversion of data from measured resistivity to lithology is not a straightforward task. Therefore, it is still challenging to make full use of these data. Many limitations must be considered before a successful geological interpretation can be performed and a reasonable 3D geological model constructed. In this paper, we propose a method for 3D geological modelling of AEM data in which the limitations are jointly considered together with a cognitive and knowledge-driven data interpretation. The modelling is performed iteratively by using voxel modelling techniques with tools developed for this exact purpose. Based on 3D resistivity grids, the tools allow the geologist to select voxel groups that define any desirable volumetric shape in the 3D model. Recent developments in octree modelling ensure exact modelling with a limited number of voxels.


Three-dimensional geological model Airborne electromagnetic data Voxel modelling Octree Groundwater 



The software development is a part of the HYACINTS research project funded by The Danish Council for Strategic Research, Danish Agency for Science Technology and Innovation. Jens Christian Refsgaard is thanked for his helpful comments on an early version of the paper. Two anonymous reviewers are thanked for their reviews and helpful comments.


  1. Allard M (2007) On the Origin of the HTEM Species. In: Milkereit B (ed) Proceedings of exploration 07: fifth decennial international conference on mineral exploration, pp 355–374Google Scholar
  2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62Google Scholar
  3. Auken E, Christiansen AV, Jacobsen L, Sørensen KI (2008) A resolution study of buried valleys using laterally constrained inversion of TEM data. J Appl Geophys 65(1):10–20CrossRefGoogle Scholar
  4. Auken E, Christiansen AV, Westergaard JA, Kirkegaard C, Foged N, Viezzoli A (2009) An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system. Explor Geophys 40:184–192CrossRefGoogle Scholar
  5. Bajc AF, Newton MJ (2007) Mapping the subsurface of waterloo region, Ontario, Canada; an improved framework of quaternary geology for hydrogeological applications. J Maps 2007:219–230. doi: 10.4113/jom.2007.56 Google Scholar
  6. Beamish D (2002) The canopy effect in airborne EM. Geophysics 67(6):1720–1728. doi: 10.1190/1.1527073 CrossRefGoogle Scholar
  7. Berg CB, Mathers SJ, Kessler H, Keefer DA (2011) Synopsis of Current Three-dimensional Geological Mapping and Modeling in Geological Survey Organizations, vol 578. Circular, Illinois State Geological Survey, IllinoisGoogle Scholar
  8. Bosch JHA, Bakker MAJ, Gunnink JL, Paap BF (2009) Airborne electromagnetic measurements as basis for a 3D geological model of an Elsterian incision. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 160(3):249–258. doi: 10.1127/1860-1804/2009/0160-0258 CrossRefGoogle Scholar
  9. Brodie R, Sambridge M (2006) A holistic approach to inversion of frequency-domain airborne EM data. Geophysics 71(6):G301–G312CrossRefGoogle Scholar
  10. Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476. doi: 10.1007/bf02083656 CrossRefGoogle Scholar
  11. Christiansen AV, Auken E (2012) A global measure for depth of investigation. Geophysics 77(4):WB171–WB177Google Scholar
  12. Christiansen AV, Auken E, Viezzoli A (2011) Quantification of modeling errors in airborne TEM caused by inaccurate system description. Geophysics 76(1):F43–F52. doi: 10.1190/1.3511354 CrossRefGoogle Scholar
  13. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300CrossRefGoogle Scholar
  14. Daly C, Caers J (2010) Multi-point geostatistics—an introductory overview. First Break 28(9):39–47. doi: 10.3997/1365-2397.2010020 Google Scholar
  15. Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  16. Geoscene3D (2013) ( November 6th Accessed April 15th 2013
  17. Goldman M, Tabarovsky L, Rabinovich M (1994) On the influence of 3-D structures in the interpretation of transient electromagnetic sounding data. Geophysics 59(6):889–901CrossRefGoogle Scholar
  18. Guillemoteau J, Sailhac P, Behaegel M (2012) Fast approximate 2D inversion of airborne TEM data: Born approximation and empirical approach. Geophysics 77(4):89–97. doi: 10.1190/geo2011-0372.1 CrossRefGoogle Scholar
  19. Gunnink JL, Bosch JHA, Siemon B, Roth B, Auken E (2012) Combining ground-based and airborne EM through artificial neural networks for modelling glacial till under saline groundwater conditions. Hydrol Earth Syst Sci 16:3061–3074CrossRefGoogle Scholar
  20. Jørgensen F, Sandersen PBE (2009) Buried valley mapping in Denmark: evaluating mapping method constraints and the importance of data density. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 160(3):211–223. doi: 10.1127/1860-1804/2009/0160-0211 CrossRefGoogle Scholar
  21. Jørgensen F, Sandersen P, Auken E (2003) Imaging buried quaternary valleys using the transient electromagnetic method. J Appl Geophys 53(4):199–213CrossRefGoogle Scholar
  22. Jørgensen F, Sandersen PBE, Auken E, Lykke-Andersen H, Sørensen K (2005) Contributions to the geological mapping of Mors, Denmark—A study based on a large-scale TEM survey. Bull Geol Soc Den 52:53–75Google Scholar
  23. Jørgensen F, Møller RR, Sandersen PBE, Nebel L (2010) 3-D geological modelling of the Egebjerg area, Denmark, based on hydrogeophysical data. Geol Surv Den Greenl Bull 20:27–30Google Scholar
  24. Jørgensen F, Scheer W, Thomsen S, Sonnenborg TO, Hinsby K, Wiederhold H, Schamper C, Burschil T, Roth B, Kirsch R, Auken E (2012) Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise. Hydrol Earth Syst Sci 16(7):1845–1862. doi: 10.5194/hess-16-1845-2012 CrossRefGoogle Scholar
  25. Kessler H, Mathers S, Sobisch HG (2009) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Comput Geosci 35(6):1311–1321. doi: 10.1016/j.cageo.2008.04.005 CrossRefGoogle Scholar
  26. Meagher D (1980) Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer. Technical report IPL-TR-80-111. Renssel Polytechnic InstituteGoogle Scholar
  27. Newman GA, Hohmann GW, Anderson WL (1986) Transient electromagnetic response of a three-dimensional body in a layered earth. Geophysics 51(8):1608–1627CrossRefGoogle Scholar
  28. Oldenborger GA, Pugin A, Pullan SE (2013) Airborne time-domain electromagnetics, electrical resistivity and seismic reflection for regional three-dimensional mapping and characterization of the Spiritwood Valley Aquifer, Manitoba Canada. Near Surf Geophys 11(1):63–74. doi: 10.3997/1873-0604.2012023 Google Scholar
  29. Pryet A, Ramm J, Chiles JP, Auken E, Deffontaines B, Violette S (2011) 3D resistivity gridding of large AEM datasets: a step toward enhanced geological interpretation. J Appl Geophys 75:277–283. doi: 10.1016/j.jappgeo.2011.07.006 CrossRefGoogle Scholar
  30. Raiber M, White PA, Daughney CJ, Tschritter C, Davidson P, Bainbridge SE (2012) Three-dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand. J Hydrol 436:13–34. doi: 10.1016/j.jhydrol.2012.01.045 CrossRefGoogle Scholar
  31. Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec Canada. Hydrogeol J 13(5–6):690–707. doi: 10.1007/s10040-004-0365-x CrossRefGoogle Scholar
  32. Royse KR (2010) Combining numerical and cognitive 3D modelling approaches in order to determine the structure of the Chalk in the London Basin. Comput Geosci 36(4):500–511. doi: 10.1016/j.cageo.2009.10.001 CrossRefGoogle Scholar
  33. Sandersen PBE (2008) Uncertainty assessment of geological models - a qualitative approach. In: Refsgaard JC, Kovar K, Haarder E, Nygaard E (eds) 2008. Credibility of Modelling. IAHS Publication, Calibration and Reliability in Groundwater modelling, pp 337–344Google Scholar
  34. Sandersen PBE, Jørgensen F, Larsen NK, Westergaard JH, Auken E (2009) Rapid tunnel-valley formation beneath the receding Late Weichselian ice sheet in Vendsyssel Denmark. Boreas 38(4):834–851. doi: 10.1111/j.1502-3885.2009.00105.x CrossRefGoogle Scholar
  35. Scharling PB, Rasmussen ES, Sonnenborg TO, Engesgaard P, Hinsby K (2009) Three-dimensional regional-scale hydrostratigraphic modeling based on sequence stratigraphic methods: a case study of the Miocene succession in Denmark. Hydrogeol J 17(8):1913–1933. doi: 10.1007/s10040-009-0475-6 CrossRefGoogle Scholar
  36. Sharpe DR, Hinton MJ, Russell HAJ, Desbarats AJ (2002) The need for basin analysis in regional hydrogeological studies: oak Ridges Moraine Southern Ontario. Geosci Can 29(1):3–20Google Scholar
  37. Sharpe DR, Pugin A, Pullan SE, Gorrell G (2003) Application of seismic stratigraphy and sedimentology to regional hydrogeological investigations: an example from Oak Ridges Moraine, southern Ontario Canada. Can Geotech J 40(4):711–730. doi: 10.1139/t03-020 CrossRefGoogle Scholar
  38. Sharpe D, Russell HAJ, Logan C (2007) A regional 3-dimensional geological model of the Oak Ridges Moraine area, Ontario, Canada. J Maps 2007:239–253. doi: 10.4113/jom.2007.58 Google Scholar
  39. Siemon B, Christiansen AV, Auken E (2009) A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf Geophys 7(5–6):629–646Google Scholar
  40. Sørensen KI, Auken E (2004) SkyTEM—A new high-resolution helicopter transient electromagnetic system. Explor Geophys 35:191–199Google Scholar
  41. Sørensen KI, Effersø F, Auken E (2001) A hydrogeophysical Investigation of the Island of Drejø. Europ J Environ Eng Geophys 6:109–124Google Scholar
  42. Stafleu J, Maljers D, Gunnink JL, Menkovic A, Busschers FS (2011) 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Neth J Geosci-Geologie En Mijnbouw 90(4):293–310Google Scholar
  43. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21. doi: 10.1023/a:1014009426274 CrossRefGoogle Scholar
  44. Troldborg L, Refsgaard J, Jensen K, Engesgaard P (2007) The importance of alternative conceptual models for simulation of concentrations in multi-aquifer system. Hydrogeol J 15:843–860CrossRefGoogle Scholar
  45. Troldborg L, Jensen K, Engesgaard P, Refsgaard J, Hinsby K (2008) Using environmental tracers in modeling flow in a complex shallow aquifer system. J Hydrol Eng 12(11):1037–1048CrossRefGoogle Scholar
  46. Turner AK (2006) Challenges and trends for geological modelling and visualisation. Bull Eng Geol Environ 65(2):109–127. doi: 10.1007/s10064-005-0015-0 CrossRefGoogle Scholar
  47. Venteris ER (2007) Three-dimensional modeling of glacial sediments using public water-well data records: an integration of interpretive and geostatistical approaches. Geosphere 3(6):456–468. doi: 10.1130/ges00090.1 CrossRefGoogle Scholar
  48. Viezzoli A, Christiansen AV, Auken E, Sørensen KI (2008) Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics 73(3):F105–F113CrossRefGoogle Scholar
  49. Viezzoli A, Jørgensen F, Sørensen C (2013) Flawed processing of airborne EM data affecting hydrogeological interpretation. Ground Water. doi: 10.1111/j.1745-6584.2012.00958.x Google Scholar
  50. West GF, Macnae JC (1991) Physics of the electromagnetic induction exploration method. In: Nabighian MN, Corbett JD (eds) Electromagnetic methods in applied geophysics, vol 2. Investigations in geophysics, Society of exploration geophysicists, pp 5–45CrossRefGoogle Scholar
  51. Wycisk P, Hubert T, Gossel W, Neumann C (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Comput Geosci 35(1):165–182. doi: 10.1016/j.cageo.2007.09.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Flemming Jørgensen
    • 1
  • Rasmus Rønde Møller
    • 1
  • Lars Nebel
    • 2
  • Niels-Peter Jensen
    • 2
  • Anders Vest Christiansen
    • 3
  • Peter B. E. Sandersen
    • 1
  1. 1.Geological Survey of Denmark and Greenland, GEUSHøjbjergDenmark
  2. 2.I-GIS A/SRisskovDenmark
  3. 3.Department of GeoscienceAarhus UniversityAarhus CDenmark

Personalised recommendations