Skip to main content
Log in

Multi-scale geological evaluation for quarrying activities in ophiolitic rocks: implications for asbestos-related legislation

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This study illustrates the importance of undertaking a multi-scale geological approach when assessing ophiolites which may contain harmful asbestos. A case history from an active quarry in the Carinthia region of Austria is presented. The data obtained indicated four main zones within the heterogeneous rock mass. The study identified those horizons which could be used for commercial purposes, notably railway ballast and road sub-base. Extensive testing was undertaken which confirmed that asbestiform amphiboles were not present in the quarry. Attention is drawn to the ambiguities in current legislation regarding the presence of asbestos.

Résumé

Cette étude illustre la nécessité de mettre en œuvre une approche géologique multi-échelle pour évaluer le contenu en amiantes nocives dans un massif d’ophiolites. Une étude de cas provenant d’une carrière en activité dans la région de Carinthie en Autriche est présentée. Les données obtenues ont indiqué l’existence de quatre zones principales au sein du massif rocheux. L’étude a permis d’identifier les horizons qui pourraient être utilisés à des fins commerciales, notamment comme ballast de voie ferrée et couche de base de route. De nombreux tests ont été réalisés. Ils ont confirmé que les amphiboles asbestiformes n’existaient pas dans cette carrière. L’attention est attirée sur les ambiguïtés de la législation actuelle concernant la présence d’amiante.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreani M, Boullier AM, Gratier JP (2005) Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge. J Struct Geol 27:2256–2267

    Article  Google Scholar 

  • Belardi G, Spaziani E, Passeri L (2008) La prova di automacinazione secondo il D.M. 14 maggio 1996: analisi degli effetti prodotti dalle principali variabili operative sulla curva granulometrica ottenuta a seguito del test. GEAM 2:5–10

    Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin, p 341

    Book  Google Scholar 

  • Churg A, Wiggs B (1984) Fiber size and number in amphibole asbestos-induced mesothelioma. Am J Pathol 115:437–442

    Google Scholar 

  • Compagnoni R, Groppo C (2006) Gli amianti in Val di Susa e le rocce che li contengono. Rend Soc Geol It 3:21–28

    Google Scholar 

  • Dilek Y and Robinson PT (2003) Ophiolites in earth history. Geol Soc Lond Sp Pub 218

  • Doll R (1955) Mortality from lung cancer in asbestos workers. Br J Ind Med 12:81–86

    Google Scholar 

  • Gibbons W (1998) The exploitation and environmental legacy of amphibole asbestos: a late 20th century overview. Environ Geochem Health 20:213–230

    Article  Google Scholar 

  • Gunter ME, Belluso E, Mottana A (2007) Amphiboles: environmental and health concerns. Rev Mineral Geochem 67:453–516

    Article  Google Scholar 

  • Harper M, Gyung Lee E, Doorn SS, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770

    Article  Google Scholar 

  • Hendrickx M (2009) Naturally occurring asbestos in eastern Australia: a review of geological occurrence, disturbance and mesothelioma risk. Environ Geol 57:909–926

    Article  Google Scholar 

  • Hirauchi KI, Yamaguchi H (2007) Unique deformation processes involving the recrystallization of chrysotile within serpentinite: implications for aseismic slip events within subduction zones. Terra Nova 19:454–461

    Article  Google Scholar 

  • Hubmann B, Suttner TJ, Messner F (2006) Geologic frame of Palaeozoic reefs in Austria with spezial emphasis on Devonian reef-architecture of the Graz Palaeozoic. Joannea Geol Paläont 8:47–72

    Google Scholar 

  • Hughes JM, Weill H (1991) Asbestosis as a precursor of asbestos related lung cancer: results of a prospective mortality study. Br J Ind Med 48:229–233

    Google Scholar 

  • IARC (International Agency for Research on Cancer) (1987) Monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogenicity: an updating of IARC monographs, vol. 42, suppl 7. Springer-Verlag, New York, p 440

  • ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock MinSci Geomech Abstr 15:319–368

    Article  Google Scholar 

  • Italian Ministerial Decree No 178, 14 May (1996) Normative e metodologie tecniche per gli interventi di bonifica, ivi compresi quelli per rendere innocuo l’amianto, previsti dall’art. 5, comma 1, lettera f), della legge 27 marzo 1992, n. 257, recante: “Norme relative alla cessazione dell’impiego dell’amianto”. Published in the Official Journal of the Italian Republic no. 251 of 25 October 1996, Ordinary Supplement

  • Karkanas P (1995) The slip-fiber chrysotile asbestos deposit in the Zidani area, northern Greece. Ore Geol Rev 10:19–29

    Article  Google Scholar 

  • Kazan-Allen L (2005) Asbestos and mesothelioma: worldwide trends. Lung Cancer 49(S1):S3–S8

    Article  Google Scholar 

  • Krainer K (1992) Fazies, Sedimentationsprozesse und Paläogeographieim Karbon der Ost- und Südalpen. Jb Geol B-A 135:99–193

  • Krainer K, Mogessie A (1991) Composition and significance of resedimented amphibolite breccias and conglomerates (Badstub Formation) in the Carboniferous of Nötsch (Eastern Alps, Carinthia, Austria). Jb Geol B A 134:65–81

    Google Scholar 

  • Krainer K, Vachard D (2002) Late Serpukhovian (Namurian A) microfacies and carbonate microfossils from the carboniferous of Nötsch (Austria). Facies 46:1–26

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Läufer AL, Hubich D, Loeschke J (2001) Variscan geodynamic evolution of the Carnic Alps (Austria/Italy). Int J Earth Sciences 90:855–870

    Article  Google Scholar 

  • Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Leake BE, Wooley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Am Mineral 89:883–887

    Google Scholar 

  • Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR (2008) Naturally occurring asbestos—a recurring public policy challenge. J Hazard Mater 153:1–21

    Article  Google Scholar 

  • Mossman BT, Bignon J, Corn M, Seaton A, Gee JBL (1990) Asbestos: scientific developments and implications for public policy. Science 247:294–301

    Article  Google Scholar 

  • Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman NK, Foufoula-Georgiou E, Hendryx MS, Lemly AD, Likens GE, Loucks OL, Power ME, White PS, Wilcock PR (2010) Mountaintop mining consequences. Science 327:148–149

    Article  Google Scholar 

  • Pan XL, Day HW, Wang W, Beckett LA, Schenker MB (2005) Residential proximity to naturally occurring asbestos and mesothelioma risk in California. Am J Respir Crit Care Med 172:1019–1025

    Article  Google Scholar 

  • Räisänen M, Torppa A (2005) Quality assessment of a geologically heterogeneous rock quarry in Pirkanmaa county, southern Finland. Bull Eng Geol Environ 64:409–418

    Article  Google Scholar 

  • Rohl AN, Langer AM, Selikoff IJ (1977) Environmental asbestos pollution related to use of quarried serpentine rock. Science 196:1319–1322

    Article  Google Scholar 

  • Ross M, Nolan RP (2003) History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes. Geol Soc Am Sp Paper 373:447–470

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America, Washington, p 799

    Google Scholar 

  • Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 54:333–352

    Google Scholar 

  • Tucker ME (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks. Third edition, Wiley-Blackwell, p 262

    Google Scholar 

  • Van Gosen BS (2007) The geology of asbestos in the United States and its practical applications. Environ Eng Geosci 13:55–68

    Article  Google Scholar 

  • Van Orden DR, Allison KA, Lee RJ (2008) Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor Built Environ 17:58–68

    Article  Google Scholar 

  • Vignaroli G, Rossetti F, Belardi G, Billi A (2011) Linking rock fabric to fibrous mineralisation: a basic tool for the asbestos hazard. Nat Hazard Earth Sci Sys 11:1267–1280

    Article  Google Scholar 

  • Walton WH (1982) The nature, hazards and assessment of occupational exposure to airborne asbestos dust: a review. Ann Occup Hyg 25:117–119

    Article  Google Scholar 

  • World Health Organization (1986) Asbestos and other natural mineral fibres. Env Health Crit 53. Geneva

  • Yavuz F (2007) WinAmphcal: a Windows program for the IMA-04 amphibole classification. Geochem Geophys Geosys 8(1). doi:10.1029/2006GC001391

Download references

Acknowledgments

The staff of the MINERALS ABBAU GMBH Company are acknowledged for their kind cooperation. Many thanks in particular to: G. Moretti and W. Strasser for their collaboration and scientific suggestions; G. Santoro for support during and after our stay in the quarry area. F. Rossetti is thanked for suggestions on a previous version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Vignaroli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignaroli, G., Belardi, G. & Serracino, M. Multi-scale geological evaluation for quarrying activities in ophiolitic rocks: implications for asbestos-related legislation. Bull Eng Geol Environ 72, 285–302 (2013). https://doi.org/10.1007/s10064-013-0475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0475-6

Keywords

Mots clés

Navigation