Skip to main content
Log in

Predicting the saturated hydraulic conductivity of soils: a review

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper examines and assesses predictive methods for the saturated hydraulic conductivity of soils. The soil definition is that of engineering. It is not that of soil science and agriculture, which corresponds to “top soil” in engineering. Most predictive methods were calibrated using laboratory permeability tests performed on either disturbed or intact specimens for which the test conditions were either measured or supposed to be known. The quality of predictive equations depends highly on the test quality. Without examining all the quality issues, the paper explains the 14 most important mistakes for tests in rigid-wall or flexible-wall permeameters. Then, it briefly presents 45 predictive methods, and in detail, those with some potential, such as the Kozeny-Carman equation. Afterwards, the data of hundreds of excellent quality tests, with none of the 14 mistakes, are used to assess the predictive methods with a potential. The relative performance of those methods is evaluated and presented in graphs. Three methods are found to work fairly well for non-plastic soils, two for plastic soils without fissures, and one for compacted plastic soils used for liners and covers. The paper discusses the effects of temperature and intrinsic anisotropy within the specimen, but not larger scale anisotropy within aquifers and aquitards.

Résumé

Cet article examine et évalue les méthodes de prédiction de la conductivité hydraulique saturée des sols. La définition du sol est celle du génie. Ce n’est pas celle de science du sol et agriculture qui correspond au sol de surface en génie. La plupart des méthodes prédictives ont été calibrées avec des essais de perméabilité de laboratoire, réalisés sur des échantillons remaniés ou intacts, pour lesquels les conditions d’essai étaient soit mesurées soit supposées être connues. La qualité des équations prédictives dépend fortement de la qualité des essais. Sans examiner tous les aspects de qualité, l’article explique les 14 erreurs les plus importantes pour les essais en perméamètre à paroi rigide ou à paroi souple. Après, il présente brièvement 45 méthodes prédictives, et en détail celles avec potentiel comme l’équation de Kozeny-Carman. Ensuite, les données de centaines d’essais d’excellente qualité, sans aucune des 14 erreurs, sont utilisées pour évaluer les méthodes prédictives avec potentiel. La performance relative de ces méthodes est évaluée et présentée en graphes. On trouve que trois méthodes fonctionnent bien pour les sols non plastiques, deux pour les sols plastiques sans fissures, et une pour les sols plastiques compactés utilisés en tapis et couvertures. L’article discute les effets de la température et de l’anisotropie intrinsèque du spécimen, mais pas de l’anisotropie à plus grande échelle dans les aquifères et aquitards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

AD, ac :

Coefficients in predictive equations

C K :

Permeability change index

C U :

Coefficient of uniformity, C U = d 60/d 10

d :

Grain size (mm)

d x :

Grain size (mm) such that x % of the solid mass is made of grains finer than d x

e :

Void ratio (m3/m3); e = n/(1−n)

e L :

Void ratio at the liquid limit (m3/m3)

e max , e min :

Maximum, minimum void ratio (m3/m3)

GSDC:

Grain size distribution curve

h :

Hydraulic head (m)

G s :

Specific gravity of solids, G s = ρ s/ρ w

I D, I e :

Density indexes (%)

I L :

Liquidity index (%)

I P :

Plasticity index (%)

I S :

Shrinkage index (%)

K :

Hydraulic conductivity (m/s)

K :

Hydraulic conductivity tensor (matrix)

K sat :

Saturated hydraulic conductivity (m/s)

n :

Porosity (m3/m3)

n c :

Porosity after compaction (m3/m3)

n max , n min :

Maximum, minimum porosity (% or m3/m3)

n e :

Effective porosity (% or m3/m3)

p :

Portion of clay minerals (%)

PL:

Piezometric level (m)

r K :

Anisotropy ratio, r K = K max/K min

RF :

Roundness factor (number)

S r :

Degree of saturation (% or m3/m3)

S rc :

Degree of saturation (% or m3/m3) after compaction

S S :

Specific surface (m2/kg)

S s :

Specific storativity (m−1)

t :

Time (s)

T :

Temperature (degrees Celsius)

w :

Water content (% or kg/kg)

w L :

Liquid limit (% or kg/kg)

w P :

Plastic limit (% or kg/kg)

WRC:

Water retention curve (θ vs. u)

α L :

Longitudinal dispersivity (m)

γ s , γ w :

Specific gravity (kN/m3) of solids, of water

μ x :

Water dynamic viscosity (Pa·s) at temperature x

μ w :

Water dynamic viscosity (Pa·s)

ρ d :

Dry density (kg/m3)

ρ s, ρ w :

Density (kg/m3) of solids, of water

θ :

Volumetric water content (m3/m3)

References

  • Ag A, Silva A (1998) Consolidation and permeability behavior of high porosity seabed sediments. Geotech Testing J 21(3):185–194

    Article  Google Scholar 

  • Akbulut S (2005) Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils. Eurasian Soil Sci 38(4):392–398

    Google Scholar 

  • Albrecht BA, Benson CH (2001) Effect of desiccation on compacted natural clays. J Geotech Geoenv Eng 127(1):67–75

    Article  Google Scholar 

  • Al-Tabbaa A, Wood DM (1987) Some measurements of the permeability of kaolin. Géotechnique 37(4):499–503

    Article  Google Scholar 

  • Alyamani MS, Sen Z (1993) Determination of hydraulic conductivity from grain-size distribution curves. Ground Water 31(4):551–555

    Article  Google Scholar 

  • Arnepalli DN, Shanthakumar S, Hanumantha Rao B, Singh DN (2008) Comparison of methods for determining specific-surface area of fine-grained soils. Geotech Geol Eng 26:121–132

    Article  Google Scholar 

  • Arya LM, Leij FJ, Shouse PJ, van Genuchten MT (1999) Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci Soc Am J 63:1063–1070

    Article  Google Scholar 

  • Arya LM, Heitman JL, Thapa BB, Bowman DC (2010) Predicting saturated hydraulic conductivity of golf course sands from particle-size distribution. Soil Sci Soc Am J 74(1):33–37

    Article  Google Scholar 

  • ASTM (2011a) Standard D2434—Permeability of granular soils (Constant Head). In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2011b) Standard D5856—Measurement of hydraulic conductivity of porous material using a rigid-wall compaction-mold permeameter. In: ASTM Annual CDs of Standards, vol 04.08, West Conshohocken, PA

  • ASTM (2011c) Standard D5084—Measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2011d) Standard D422: Standard Test Method for Particle-Size Analysis of Soils. In: ASTM Annual CDs of Standards, vol 04.08, West Conshohocken, PA

  • ASTM (2011e) Standard D4253—Maximum index density and unit weight of soils using a vibratory table. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2011f) Standard D4254—Minimum Index Density and unit weight of soils and calculation of relative density. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • Aubertin M, Bussière B, Chapuis RP (1996) Hydraulic conductivity of homogenized tailings from hard rock mines. Can Geotech J 33:470–482

    Article  Google Scholar 

  • Aubertin M, Chapuis RP, Mbonimpa M (2005) Goodbye Hazen; Hello, Kozeny-Carman: discussion. ASCE J Geotech Geoenviron Eng 131(8):1056–1057

    Article  Google Scholar 

  • Babu GL, Pandian NS, Nagaraj TS (1993) A re-examination of the permeability index of clays. Can Geotech J 30:187–191

    Article  Google Scholar 

  • Baldwin M, Gosling D (2009) BS EN ISO 22475-1: implications for geotechnical sampling in the UK. Ground Eng, August pp 28–31

  • Bandini P, Shathiskumar S (2009) Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. ASCE J Geotech Geoenviron Eng 135(12):1976–1980

    Google Scholar 

  • Barr DW (2001) Coefficient of permeability determined by measurable parameters. Ground Water 39(3):356–361

    Article  Google Scholar 

  • Barrande M, Bouchet R, Denoyel R (2007) Tortuosity of porous particles. Anal Chem 79(23):9115–9121

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Beard DC, Weyl PK (1973) Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin 57(2):349–369

    Google Scholar 

  • Benabdallah EM, Chapuis RP (2007) Studying the influence of scale effects when computing the hydraulic conductivity of a Champlain clay. In: Proceedings of 60th Can Geotech Conf, Ottawa, pp 425–432

  • Benson CH, Boutwell GP (2000) Compaction conditions and scale-dependent hydraulic conductivity of compacted clay liners. ASTM STP 1384:254–273

    Google Scholar 

  • Benson CH, Zhai H, Wang X (1994) Estimating hydraulic conductivity of compacted clay liners. ASCE J Geotech Eng 120(2):366–387

    Article  Google Scholar 

  • Berilgen SA, Berilgen MM, Ozaydin IK (2006) Compression and permeability relationships in high water content clays. Appl Clay Sci 31:249–261

    Article  Google Scholar 

  • Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Saden und Kiesen, aus der Kornverteilungskurve. Z Wasserwirt-Wassertech 14:165–168 (in German)

    Google Scholar 

  • Bishop AW (1948) A new sampling tool for use in cohesionless sands below ground water level. Géotechnique 1(1):125–131

    Article  Google Scholar 

  • Black DK, Lee KL (1973) Saturating laboratory samples by back-pressure. ASCE J Geotech Eng Div 99(1):75–93

    Google Scholar 

  • Boadu FK (2000) Hydraulic conductivity of soils from grain-size distribution: new models. J Geotech Geoenviron Eng 126(8):739–746

    Article  Google Scholar 

  • Bolton AJ (2000) Some measurements of permeability and effective stress on a heterogeneous soil mixture: implications for recovery of inelastic strains. Eng Geology 57:95–104

    Article  Google Scholar 

  • Bolton AJ, Maltman AJ, Fisher Q (2000) Anisotropic permeability and bimodal pore-size distributions of fine-grained marine sediments. Mar Pet Geol 17:657–672

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins, CO

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multi-molecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Bryant SL, Mellor DW, Cade CA (1993) Physically representative network models of transport in porous media. AIChE J 39:387–396

    Article  Google Scholar 

  • Bussière B (2007) Colloquium 2004: hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can Geotech J 44(9):1019–1052

    Article  Google Scholar 

  • Camapum de Carvalho J, Domaschuk L, Mieussens C (1986) Discussion of new procedure for saturating sand specimens. J Geotech Engng 112(1):101–102

    Article  Google Scholar 

  • Cao S, Glezen WH, Lerche I (1986) Fluid flow, hydrocarbon generation and migration: a quantitative model of dynamical evolution in sedimentary basins. Proc Offshore Technol Conf 2:267–276

    Google Scholar 

  • Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng London 15:150–166

    Google Scholar 

  • Carman PC (1938a) Fundamental principles of industrial filtration (A critical review of present knowledge). Trans Inst Chem Eng London 16:168–188

    Google Scholar 

  • Carman PC (1938b) Determination of the specific surface of powders I. Trans J Soc Chem Ind 57:225–234

    Google Scholar 

  • Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Science 29:263–273

    Google Scholar 

  • Carman PC (1956) Flow of gases through porous media. Butterworths, London

    Google Scholar 

  • Carrier WD (1986) Consolidation parameters derived from index tests. Géotechnique 36(2):291–292

    Article  Google Scholar 

  • Carrier WD (2003) Goodbye, Hazen, Hello, Kozeny-Carman. ASCE J Geotech Geoenviron Eng 129:1054–1056

    Article  Google Scholar 

  • Carrier WD, Beckman JF (1984) Correlations between index tests and the properties of remoulded clays. Géotechnique 34(2):211–228

    Article  Google Scholar 

  • Cazaux D, Didier G (2002) Comparison between various field and laboratory measurements of the hydraulic conductivity of three clay liners. ASTM STP1415: 3–24

    Google Scholar 

  • Cerato AB (2001) Influence of specific surface area on geotechnical characteristics of fine-grained soils. MSc thesis, Civil Eng, Univ Massachusetts, Amherst

  • Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech Testing J 25:1–7

    Google Scholar 

  • Chan HT, Kenney TC (1973) Laboratory investigation of permeability ratio of New Liskeard varved clay. Can Geotech J 10:453–472

    Article  Google Scholar 

  • Chapuis RP (1990a) Sand-bentonite liners: predicting permeability from laboratory tests. Can Geotech J 27(1):47–57

    Article  Google Scholar 

  • Chapuis RP (1990b) Sand-bentonite liners: field control methods. Can Geotech J 27(2):216–223

    Article  Google Scholar 

  • Chapuis RP (1992) Similarity of internal stability criteria for granular soils. Can Geotech J 29:711–713

    Article  Google Scholar 

  • Chapuis RP (1995) Controlling the quality of groundwater parameters: some examples. Can Geotech J 32:72–177

    Article  Google Scholar 

  • Chapuis RP (1998a) Overdamped slug tests in monitoring wells: review of interpretation methods with mathematical, physical, and numerical analysis of storativity influence. Can Geotech J 35(5):697–719

    Article  Google Scholar 

  • Chapuis RP (1998b) Poor borehole sampling and consequences for permeability evaluation. In: Proceedings of 8th Congress IAEG, Vancouver, Balkema, vol 1, pp 417–423

  • Chapuis RP (1999) Borehole variable-head permeability tests in compacted clay liners and covers. Can Geotech J 36(1):39–51

    Article  Google Scholar 

  • Chapuis RP (2001) Extracting piezometric level and hydraulic conductivity from tests in driven flush-joint casings. Geotech Test J 24(2):209–219

    Article  Google Scholar 

  • Chapuis RP (2002) The 2000 R.M. Hardy Lecture: Full-scale hydraulic performance of soil–bentonite and compacted clay liners. Can Geotech J 39:417–439

    Article  Google Scholar 

  • Chapuis RP (2004a) Permeability tests in rigid-wall permeameters: determining the degree of saturation, its evolution and influence on test results. Geotech Test J 27(3):304–313

    Google Scholar 

  • Chapuis RP (2004b) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795

    Article  Google Scholar 

  • Chapuis RP (2007) Professor, I have forgotten to measure an elevation for my falling-head permeability test. Geotechnical News 25(2):38–42

    Google Scholar 

  • Chapuis RP (2008) Predicting the saturated hydraulic conductivity of natural soils. Geotechnical News 26(2):47–50

    Google Scholar 

  • Chapuis RP (2009) Interpreting slug tests with large data sets. Geotech Test J 32(2):139–146

    Google Scholar 

  • Chapuis RP (2010) Using a leaky swimming pool for a huge falling-head permeability test. Engng Geology 114(1–2):65–70

    Article  Google Scholar 

  • Chapuis RP (2012) Estimating the in situ porosity of sandy soils sampled in boreholes. Engng Geology (submitted)

  • Chapuis RP, Aubertin M (2003) On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil. Can Geotech J 40(3):616–628

    Article  Google Scholar 

  • Chapuis RP, Aubertin M (2004) On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil: Reply. Can Geotech J 41(5):994–996

    Article  Google Scholar 

  • Chapuis RP, Aubertin M (2010) Influence of relative compaction on the hydraulic conductivity of completely decomposed granite in Hong Kong: Discussion. Can Geotech J 47(6):704–707

    Article  Google Scholar 

  • Chapuis RP, Chenaf D (2002) Slug tests in a confined aquifer: experimental results in a large soil tank and numerical modelling. Can Geotech J 39(1):14–21

    Article  Google Scholar 

  • Chapuis RP, Chenaf D (2003) Variable-head permeability tests in driven flush-joint casings: Physical and numerical modeling. Geotech Test J 26(3):245–256

    Google Scholar 

  • Chapuis RP, Gill DE (1989) Hydraulic anisotropy of homogeneous soils and rocks: influence of the densification process. Bull Int Assoc Eng Geol 39:75–86

    Article  Google Scholar 

  • Chapuis RP, Légaré PP (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance. ASTM STP 1147:177–186

    Google Scholar 

  • Chapuis RP, Sabourin L (1989) The effects of installation of piezometers and wells on groundwater characteristics and measurements. Can Geotech J 26(4):604–613

    Article  Google Scholar 

  • Chapuis, RP, Tournier JP (2006) Simple graphical methods to assess the risk of internal erosion. In: Proceedings of ICOLD Barcelona 2006, Question 86, Balkema, pp 319–335

  • Chapuis RP, Tournier JP (2008) Assessing the quality of split spoon samples. Geotech News 26(3):46–48

    Google Scholar 

  • Chapuis RP, Paré JJ, Lavallée JG (1981) Essais de perméabilité à niveau variable. In: Proceedings of 10th ICSMFE, Stockholm, Vol 1, pp 401–406

  • Chapuis RP, Baass K, Davenne L (1989a) Granular soils in rigid-wall permeameters: method for determining the degree of saturation. Can Geotech J 26:71–79

    Article  Google Scholar 

  • Chapuis RP, Gill DE, Baass K (1989b) Laboratory permeability tests on sand: Influence of the compaction method on anisotropy. Can Geotech J 26:614–622

    Article  Google Scholar 

  • Chapuis RP, Lavoie J, Girard D (1992) Design, construction, performance and repairs of the soil-bentonite liners of two lagoons. Can Geotech J 29(5):638–649

    Article  Google Scholar 

  • Chapuis RP, Contant A, Baass KA (1996) Migration of fines in 0–20 mm crushed base during placement, compaction, and seepage under laboratory conditions. Can Geotech J 33:168–176

    Article  Google Scholar 

  • Chapuis RP, Dallaire V, Marcotte D, Chouteau M, Acevedo N, Gagnon F (2005) Evaluating the hydraulic conductivity at three different scales within an unconfined aquifer at Lachenaie, Quebec. Can Geotech J 42(4):1212–1220

    Article  Google Scholar 

  • Chapuis RP, Mbonimpa M, Dagenais AM, Aubertin M (2006) A linear graphical method to predict the effect of compaction on the hydraulic conductivity of clay liners and covers. Bull Eng Geol Env 65(1):93–98

    Article  Google Scholar 

  • Chapuis RP, Masse I, Madinier B, Aubertin M (2007) A drainage column test for determining unsaturated properties of coarse materials. Geotech Testing J 30(2):83–89

    Google Scholar 

  • Christiansen JE (1944) Effect of entrapped air upon the permeability of soils. Soil Sci 58(5):355–365

    Article  Google Scholar 

  • Civan F (2001) Scale effect on porosity and permeability: kinetics, model and correlation. AIChE J 47(2):271–287

    Article  Google Scholar 

  • Costa A (2006) Permeability-porosity relationship: a re-examination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33(2) doi:10.1029/2005GL025134

  • Côté J, Fillion MH, Konrad JM (2011) Intrinsic permeability of materials ranging from sand to rock-fill using natural convection tests. Can Geotech J 48(5):679–690

    Article  Google Scholar 

  • Craeger WP, Justin JD, Hinds J (1947) Engineering for dams, Vol 2, p 646, Wiley & Sons, New York

  • Crawford R, Jones GF, You L, Wu Q (2011) Compression-dependent permeability measurement for random soft porous media and its implication for lift generation. Chem Eng Sci 66(3):294–302

    Article  Google Scholar 

  • Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Ground Water 42(3):459–464

    Article  Google Scholar 

  • Cyr RY, Chiasson P (1999) Modeling subsoil drainage systems for urban roadways. Can Geotech J 26:799–809

    Google Scholar 

  • D’Andrea R (2001) Hydraulic conductivity of soils from grain-size distribution: new models: discussion. J Geotech Geoenviron Eng 127(10):899

    Article  Google Scholar 

  • Dallavale JM (1948) Micromeritics—the technology of fine particles, 2nd edn. Pitman, New-York

    Google Scholar 

  • Daniel DE (1994) State-of-the art: laboratory hydraulic conductivity test for saturated soil. In: Daniel DE, Trautwein SJ (eds) Hydraulic conductivity and waste contaminant transport in soil, Vol 1142 pp 30–78, ASTM STP

  • Daniel DE, Trautwein SJ, Boynton SS, Foreman DE (1984) Permeability testing with flexible-wall permeameters. Geotech Testing J 7(3):113–122

    Article  Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris

    Google Scholar 

  • Dassargues A, Biver P, Monjoie A (1991) Geotechnical properties of the Quaternary sediments in Shanghai. Eng Geol 31(1):71–90

    Article  Google Scholar 

  • David C, Wong TF, Zhu WL, Zhang J (1994) Laboratory measurements of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl Geophys 143(1–3):425–456

    Article  Google Scholar 

  • Davis SN (1989) Correlations of permeability and grain size: discussion. Ground Water 28(1):116

    Article  Google Scholar 

  • De Bruyn CMA, Collins LF, Williams AAB (1957) The specific surface, water affinity, and potential expansiveness of clays. Clay Mineralogy Bull 3:120–128

    Article  Google Scholar 

  • De Marsily G, Delay F, Goncalves J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrol J 13(1):161–183

    Google Scholar 

  • DeJong JT, Christoph GG (2009) Influence of particle properties and initial specimen state on one-dimensional compression and hydraulic conductivity. J Geotech Geoenv Eng 135(3):449–454

    Article  Google Scholar 

  • Delage P, Lefebvre G (1984) Study of the structure of a sensitive Champlain clay and its evolution during consolidation. Can Geotech J 21:21–35

    Article  Google Scholar 

  • Delage P, Audiguier M, Cui YJ, Howat MD (1996) Microstructure of a compacted silt. Can Geotech J 33:150–158

    Article  Google Scholar 

  • Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37:343–354

    Article  Google Scholar 

  • Dewhurst DN, Aplin AC, Sarda JP (1999) Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. J of Geophys Res 104(B12):29261–29274

    Google Scholar 

  • Dolinar B (2009) Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations. Appl Clay Sci 45:90–94

    Article  Google Scholar 

  • Dolinar B, Trauner L (2004) Liquid limit and specific surface of clay particles. Geotech Test J 27(6):580–584

    Google Scholar 

  • Dolinar B, Mišič M, Trauner L (2007) Correlation between surface area and Atterberg limits of fine-grained soils. Clays Clay Miner 55(5):519–523

    Article  Google Scholar 

  • Donohue TJ, Wensrich CM (2008) The prediction of permeability with the aid of computer simulations. Part Sci Technol 26:97–108

    Article  Google Scholar 

  • Dorsey NE (1968) Properties of ordinary water-substance in all its phases: water vapour, water, and all the ices. Hafner Publishing Company, New York

    Google Scholar 

  • Driscoll FG (1986) Groundwater and Wells, 2nd edn. Johnson Div, St. Paul, MIN 1108 p

    Google Scholar 

  • Dubreuil-Boisclair C, Gloaguen E, Marcotte D, Giroux B (2011) Heterogeneous aquifer characterization from ground penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations. Geophysics 76(4):J13–J25

    Google Scholar 

  • Durner W (1994) Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 30(2):211–223

    Article  Google Scholar 

  • Dutta N (1987) Fluid flow in low permeable porous media. In: Doligetz B (ed) Migration of Hydrocarbons in Sedimentary Basins. Technip, Paris, pp 567–596

    Google Scholar 

  • Erzin Y, Gumaste SD, Gupta AK, Singh DN (2009) Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Can Geotech J 46:955–968

    Article  Google Scholar 

  • Esselburn JD, Ritzi RW Jr, Dominic DF (2011) Porosity and permeability in ternary sediment mixtures. Ground Water 49(3):393–402

    Article  Google Scholar 

  • Farrar DM, Coleman JD (1967) The correlation of surface area with other properties of 19 British clay soils. J of Soil Science 18(1):118–124

    Article  Google Scholar 

  • Ferrandon J (1948) Les lois d’écoulement de filtration. Le Génie Civil 125(2):24–28

    Google Scholar 

  • Fredlund MD, Xing AQ, Huang SY (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J 31(4):533–546

    Article  Google Scholar 

  • Fredlund MD, Wilson GW, Fredlund DG (2002) Use of grain-size distribution for the estimation of the soil-water characteristic curve. Can Geotech J 39(5):1103–1117

    Article  Google Scholar 

  • Garcia-Bengochea I, Lovell CW (1981) Correlative measurements of pore size distribution and permeability in soils. In permeability and ground water contaminant transport. ASTM STP 746:137–150

  • Garcia-Bengochea I, Lovell CW, Altschaeffl AG (1979) Pore distribution and permeability of silty clays. J Geotech Eng 105(GT7):839–856

    Google Scholar 

  • Ghanbarian-Alavijeh B, Liaghat AM, Sohrabi S (2010) Estimating saturated hydraulic conductivity from soil physical properties using neural network model. World Acad Sci Eng Technol 62:131–136

    Google Scholar 

  • Ghassemi A, Pak A (2011a) Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method. Int J Num Anal Meth Geomech 35(8):886–901

    Article  Google Scholar 

  • Ghassemi A, Pak A (2011b) Numerical study of factors influencing relative permeabilites of two immiscible fluids through porous media using lattice Boltzann method. J of Petroleum Sci Eng 77(1):135–145

    Article  Google Scholar 

  • Gloaguen E, Chouteau M, Marcotte D, Chapuis R (2001) Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. J Appl Geophys 47:135–152

    Article  Google Scholar 

  • Göktepe AB, Sezer A (2010) Effect of particle shape on density and permeability of sand. Proc Instit Civil Eng 163:307–320

    Google Scholar 

  • Govindaraju RS, Reddi LN, Bhargava SK (1995) Characterization of preferential flow paths in compacted sand-clay mixtures. J Geotech Eng 121(9):652–659

    Article  Google Scholar 

  • Green RE, Corey JC (1960) Calculation of hydraulic conductivity: a further evaluation of some predictive methods. Proc Soil Sci Soc Am 35:3–8

    Article  Google Scholar 

  • Gregg SJ, Sing KWS (1967) Adsorption Surface Area and Porosity. Academic Press, London

    Google Scholar 

  • Gupta SC, Larson WE (1979) Estimating soil–water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour Res 15(6):1633–1635

    Google Scholar 

  • Guyonnet D, Gourry JC, Bertrand L, Amraoui N (2003) Heterogeneity detection in an experimental clay liner. Can Geotech J 40(1):149–160

    Article  Google Scholar 

  • Hansen D (2004) On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils: Discussion. Can Geotech J 41:990–993

    Article  Google Scholar 

  • Harleman DRF (1963) Dispersion-permeability correlation in porous media. ASCE J Hydraulics Div 89(2):67–85

    Google Scholar 

  • Hassler GL, Rice RR, Leeman EM (1936) Investigations on the recovery of oil from sandstone by gas-drive. Petrol Trans AIME 118:116–137

    Google Scholar 

  • Hatanaka M, Uchida A, Takehara N (1997) Permeability characteristics of high-quality undisturbed sands measured in a triaxial cell. Soils Found 37(3):129–135

    Article  Google Scholar 

  • Hatanaka M, Uchida A, Taya Y, Takehara N, Hagisawa T, Sakou N, Ogawa S (2001) Permeability characteristics of high-quality undisturbed gravely soils measured in laboratory tests. Soils Found 41(3):45–55

    Article  Google Scholar 

  • Haug MD, Wong LC (1992) Impact of molding water content on hydraulic conductivity of compacted soil-bentonite. Can Geotech J 29(2):253–262

    Article  Google Scholar 

  • Haug MD, Buettner WG, Wong LC (1994) Impact of leakage on precision in low gradient flexible wall permeability testing. In: Daniel DE, Trautwein SJ (eds) Hydraulic conductivity and waste contaminant transport in soils, vol 1142, pp 390–406, ASTM STP

  • Haverkamp R, Parlange JY (1986) Predicting the water retention curve from particle-size distribution: I. Sandy soils without organic matter. Soil Sci 142:325–339

    Article  Google Scholar 

  • Hazen A (1892) Some physical properties of sand and gravel, with special reference to their use in filtration. Massachusetts State Board of Health, 24th annual report, Boston, pp 539–556

  • Hazen A (1911) Dams on sand formations: discussion. Trans ASCE 73:199–203

    Google Scholar 

  • Horgan GW (1998) Mathematical morphology for analysing soil structure from images. Europ J Soil Sci 49(2):161–173

    Article  Google Scholar 

  • Hossain D (1995) Leakage control of long-duration testing of triaxial specimens. ASCE J Geotech Eng 121(11):810–813

    Article  Google Scholar 

  • Houpeurt A (1974) Mécanique des fluides dans les milieux poreux—Critiques et recherches. Technip, Paris

    Google Scholar 

  • Hvorslev MJ (1940) The present status of the art of obtaining undisturbed samples of soils. Harvard Univ, Soil Mech Series No. 14

  • Hvorslev MJ (1949) Subsurface exploration and sampling of soils for civil engineering purposes. The Engineering Foundation, New York, 521 p

    Google Scholar 

  • Hwang SI, Powers SE (2003) Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci Soc Am J 67:1103–1112

    Article  Google Scholar 

  • ISSMFE (1981) International manual for the sampling of soft cohesive soils. Tokai Univ Press, Tokyo

    Google Scholar 

  • Jabro JD (1992) Estimation of saturated hydraulic conductivity of soils from particle-size distribution and bulk-density data. Trans ASAE 35:557–560

    Google Scholar 

  • Jackson RE (2003) An introduction to the effects of heterogeneities on the characterization and remediation of alluvial aquifers alluvial geosystems. Environ Eng Geosci 9(1):1–4

    Article  Google Scholar 

  • Juang CJ, Holtz RD (1986) Fabric, pore size distribution and permeability of sandy soils. ASCE J Geotech Eng 112:855–868

    Article  Google Scholar 

  • Juárez-Badillo E (1984) The permeability of natural soft clays. Part II: permeability characteristics: discussion. Can Geotech J 21:730–731

    Article  Google Scholar 

  • Kaoser S, Barrington S, Elektorowicz T, Ayadat T (2006) The influence of hydraulic gradient and rate of erosion on hydraulic conductivity of sand-bentonite mixtures. Soil Sedim Contamin 15(5):481–496

    Article  Google Scholar 

  • Kaubisch M, Fischer M (1985) Zur Berechnung des Filtrationskoeffizienten in Tagebaukippen. Teil 3: Ermittlung des Filtrationskoeffizienten für schluffige Feinsande aus Mischbodenkippen durch Korngrößenanalysen. Neue Bergbautechnik 15:142–143

    Google Scholar 

  • Kenney TC, Chan HT (1973) Laboratory investigation of permeability ratio of New Liskeard varved soil. Can Geotech J 10(3):453–472

    Article  Google Scholar 

  • Kenney TC, Lau D (1985) Internal stability of granular filters. Can Geotech J 22:215–225

    Article  Google Scholar 

  • Kenney TC, Lau D (1986) Internal stability of granular filters: reply. Can Geotech J 23:420–423

    Article  Google Scholar 

  • Kenney TC, Lau D, Ofoegbu GI (1984) Permeability of compacted granular materials. Can Geotech J 21:726–729

    Article  Google Scholar 

  • Kezdi A (1969) Increase of protective capacity of flood control dikes (in Hungarian). Dept of Geotechnique, Tech Univ Budapest, Report No.1

  • Konrad JM, Pouliot N (1997) Ultimate state of reconstituted and intact samples of deltaic sand. Can Geotech J 34(5):737–748

    Google Scholar 

  • Koponen A, Kataja M, Timonen J (1997) Permeability and effective porosity of porous media. Phys Rev E 56(3):3319–3325

    Article  Google Scholar 

  • Kovács G (1981) Seepage hydraulics. Elsevier Science Publishers, Amsterdam

  • Kozeny J (1927) Ueber kapillare Leitung des Wassers in Boden. Sitzungsber Akad, Wiss., Wien Math. Naturwiss. Kl. Abt.2a 13:271–306 (in German)

  • Kozeny J (1953) Hydraulik. Springer, Wien (in German)

    Book  Google Scholar 

  • Krumbein WC (1941) Measurement and geological significance of shape and roundness of sedimentary particles. J Sediment Petrol 11(2):64–72

    Google Scholar 

  • Krumbein WC, Monk GD (1942) Permeability as a function of the size parameters of unconsolidated sands. Petrol Trans Am Inst Min Eng 151:153–163

    Google Scholar 

  • Krumbein WC, Sloss LL (1963) Stratigraphy and Sedimentation, 2nd edn. WH Freeman and Comp, San Francisco

    Google Scholar 

  • Kunze RJ, Uehara G, Graham K (1968) Factors important in the calculation of hydraulic conductivity. Proc Soil Sc Soc Am 32:760–765

    Article  Google Scholar 

  • La Rochelle P, Sarrailh J, Tavenas F, Roy M, Leroueil S (1981) Cause of sampling disturbance and design of a new sampler for sensitive soils. Can Geotech J 18(1):52–66

    Article  Google Scholar 

  • Lambe TW (1958) The structure of compacted clay. ASCE J Soil Mech Found Div 84(SM2): 1654–1 to 34

    Google Scholar 

  • Lambe TW, Whitman (1969) Soil mechanics. John Wiley & Sons, New York

  • Lapierre C, Leroeuil S, Locat S (1990) Mercury intrusion and permeability of Louiseville clay. Can Geotech J 27:761–773

    Article  Google Scholar 

  • Larsson R (1981) Drained behaviour of Swedish clays. Swedish Geotech Inst Report No.12

  • L’Écuyer M, Chapuis RP, Aubertin M (1993) Field and laboratory investigations of hydraulic conductivity of acid producing mine tailings. In: Proceedings of ASCE-CSCE Conf on Env Engng, Montreal, Vol 1, pp 213–220

  • Lefebvre G, Poulin C (1979) A new method of sampling in sensitive clay. Can Geotech J 16:226–233

    Article  Google Scholar 

  • Leij FJ, Russell WB, Lesch SM (1997) Closed–form expressions for water retention and conductivity data. Ground Water 35:848–858

    Article  Google Scholar 

  • Leong EC, Rahardjo H (1997) Permeability functions for unsaturated soils. J Geotech Geoenv Eng 125(12):1118–1126

    Article  Google Scholar 

  • Lerche I (1991) Inversion of dynamical indicators in quantitative basin analysis models I. Theoretical considerations. Math Geol 23(6):817–832

    Article  Google Scholar 

  • Leroueil S, Bouclin G, Tavenas F, Bergeron L, La Rochelle P (1990) Permeability anisotropy of natural clays as a function of strain. Can Geotech J 27(5):568–579

    Article  Google Scholar 

  • Li X, Zhang LM (2009) Characterization of dual-structure pore-size distribution of soil. Can Geotech J 46:129–141

    Article  Google Scholar 

  • Locat J, Lefebvre G, Ballivy G (1984) Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada. Can Geotech J 21:530–540

    Article  Google Scholar 

  • Loudon AG (1952) The computation of permeability from simple soil tests. Géotechnique 3(3):165–183

    Article  Google Scholar 

  • Lowe J, Johnson TC (1960) Use of back-pressure to increase degree of saturation of triaxial test specimens. In: Proceedings of ASCE Conference on Shear Strength of Cohesive Soils, Boulder, CO, pp 819–836

  • Lowell S, Shields JE (1991) Powder surface area and porosity. Chapman & Hall, London

    Google Scholar 

  • Lubochkov EA (1965) Graphical and analytical methods for the determination of internal stability of filters consisting of non cohesive soil. Izvestia, vniig 78:255–280 [In Russian]

    Google Scholar 

  • Lubochkov EA (1969) The calculation of suffossion properties of non-cohesive soils when using the non-suffossion analog. In: Proceedings of Int Conf Hyd Res, Pub Tech Univ Brno, Svazek B-5, Brno, Czechoslovakia, pp 135–148 [In Russian]

  • Luczak-Wilamowska B (2004) Basic soil properties of a number of artificial clay-sand mixtures determined as a function of sand content. Lect Notes Earth Sci 104:308–315

    Article  Google Scholar 

  • Malinowska E, Szymanski A, Sas W (2011) Estimation of flow characteristics in peat. Geotech Testing J 33(4). doi:10.1520/GTJ102783

  • Marshall TJ (1958) A relation between permeability and size distribution of pores. J Soil Science 9(1):1–8

    Article  Google Scholar 

  • Marshall TJ (1962) Permeability equations and their models. In: Proceedings of symp interaction between fluids and particles, Euro Fed Chem Eng, London, pp 299–303

  • Masch FD, Denny KJ (1966) Grain size distribution and its effect on the permeability of unconsolidated sands. Water Resour Res 2(4):665–677

    Article  Google Scholar 

  • Matyka M, Arzhang K, Zbigniew K (2008) Tortuosity-porosity relation in porous media flow. Phys Rev E 78(2). doi:10.1103/PhysRevE.78.026306

  • Mavis FT, Wilsey EF (1937) A study of the permeability of sand. Iowa State Univ Eng Bull 7:1–29

    Google Scholar 

  • Mavko G, Nur A (1997) The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics 62(5):1480–1482

    Google Scholar 

  • Mazier G (1974) Méthodes de prélèvement des sols meubles. Annales de l’ITBTP 319:75–85

    Google Scholar 

  • Mbonimpa M, Aubertin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20(3):235–259

    Article  Google Scholar 

  • McKinlay DG, Safiullah AMM (1980) Pore size distribution and permeability of silty clays. ASCE J Geotech Eng Div 106(GT10):1165–1168

    Google Scholar 

  • Mesri G, Aljouni M (2007) Engineering properties of fibrous peats. J Geotech Geoenv Eng 133(7):850–866

    Article  Google Scholar 

  • Mesri G, Lo K, Feng TW (1994) Settlement of embankments on soft clays. Vertical and horizontal deformation of foundations and embankments, ASCE, New York, pp 8–56

  • Mesri G, Olson RE (1971) Mechanisms controlling the permeability of clays. Clays Clay Miner 19:151–158

    Article  Google Scholar 

  • Michaels AS, Lin CS (1954) The permeability of kaolinite. Ind Eng Chemistry 46(6):1239–1246

    Article  Google Scholar 

  • Millington RJ, Quirk JP (1959) Permeability of porous media. Nature 183:387–388

    Article  Google Scholar 

  • Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207

    Article  Google Scholar 

  • Minagawa H, Sakamoto Y, Komai T, Narita H, Mizutani K, Ohga K, Takahara N, Yamaguchi T (2009) Relation between pore-size distribution and permeability of sediments.In: Proceedings of 19th International Offshore and Polar Eng Conf, Osaka, Japan, June 21–26, 2009, pp 25–32

  • Mitchell JK, Hooper DR, Campanella RG (1965) Permeability of compacted clays. ASCE J Soil Mech Found Div 91(SM4):41–65

    Google Scholar 

  • Moldrup P, Olesen T, Komatsu T, Schjonning P, Rolston DE (2001) Tortuosity diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65(3):613–623

    Article  Google Scholar 

  • Moraes JAP (1971) General conclusions concerning the hydrogeology of major valley alluvium in central United States. PhD thesis, Univ of Missouri, Columbia, CO, p 176

  • Morin P (1991) Amélioration des mesures des propriétés de consolidation au laboratoire à l’aide du montage perméamétrique. Can Geotech J 28:127–133

    Article  Google Scholar 

  • Morin RH, LeBlanc DR, Troutman BM (2010) The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer. Ground Water 48(2):181–190

    Article  Google Scholar 

  • Morris PH (2003) Compressibility and permeability correlations for fine-grained dredged materials. J Waterway Port Coastal Ocean Eng 129(4):188–191

    Article  Google Scholar 

  • Morris PH, Lockington DA, Apelt CJ (2000) Correlations for mine tailings consolidation parameters. Int J Surf Min Rec Environ 14(2):171–182

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Muhunthan B (1991) Liquid limit and surface area of clays. Géotechnique 41:135–138

    Article  Google Scholar 

  • Nagaraj TS, Pandian NS, Narasimha Raju PSR (1991) An approach for prediction of compressibility and permeability behaviour of sand-bentonite mixes. Ind Geotech J 21(3):271–282

    Google Scholar 

  • Nagaraj TS, Pandian NS, Narasimha Raju PSR (1993) Stress state permeability relationships for fine-grained soils. Géotechnique 43(2):333–336

    Article  Google Scholar 

  • Nagaraj TS, Pandian NS, Narasimha Raju PSR (1994) Stress-state-permeability relations for overconsolidated clays. Géotechnique 44(2):349–352

    Article  Google Scholar 

  • Nakano K, Miyazaki T (2005) Predicting the saturated hydraulic conductivity of compacted subsoils using the non-similar media concept. Soil Tillage Res 84:145–453

    Google Scholar 

  • Navfac DM7 (1974) Design Manual—Soil mechanics, foundations, and earth structures. US Govt Printing Office, Washington, DC

  • Nelson PH (1994) Permeability-porosity relationships in sedimentary rocks. Log Anal 35(3):38–62

    Google Scholar 

  • Nelson PH (2005) Permeability, porosity, and pore-throat size: a three-dimensional perspective. Petrophysics 46(6):452–455

    Google Scholar 

  • Neuzil CE (1994) How permeable are clays and shales. Water Resour Res 30(2):145–150

    Article  Google Scholar 

  • Nishida Y, Nakagawa S (1969) Water permeability and plastic index of soils. In: Proceedings of IASH-UNESCO Symposium Tokyo, Pub 89, pp 573–578

  • Nogai T, Ihara M (1978) Study on air permeability of fiber assemblies oriented unidirectionally. J Text Mach Soc Jpn 31(12):T166–T170

    Article  Google Scholar 

  • O’Kelly BC (2006) Compression and consolidation anisotropy of some soft soils. Geotech Geol Eng 24:1715–1728

    Article  Google Scholar 

  • Olsen HW (1960) Hydraulic flow through saturated clays. In: Swineford A, Franks PC (eds) Proceedings of 9th national conference on clays and clay minerals, Lafayette, Indiana, Oct 5–8, 1960, Pergamon Press, New York, pp 131–161

  • Olson RE, Daniel DE (1981) Measurement of the hydraulic conductivity of fine-grained soils. In permeability and groundwater contaminant transport. ASTM STP 746:18–64

    Google Scholar 

  • Orr CC, Dallavale JM (1959) Fine particle measurement size, surface and pore volume. MacMillan, New-York

    Google Scholar 

  • Othman MA, Benson CH, Chamberlain EJ, Zimmie TF (1994) Laboratory testing to evaluate changes in hydraulic conductivity of compacted clays caused by freeze-thaw: state-of-the-art. ASTM STP1142:227–254

    Google Scholar 

  • Panda MN, Lake LW (1994) Estimation of single-phase permeability from the parameters of a particle-size distribution. AAPG Bull 78(7):1028–1039

    Google Scholar 

  • Pane V, Croce P, Znidarcic D, Ko HY, Olsen HW, Schiffman RL (1983) Effects of consolidation on permeability measurements for soft clay. Géotechnique 33:67–71

    Article  Google Scholar 

  • Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore space geometry. Geophysics 64(5):1447–1460

    Google Scholar 

  • Pape H, Clauser C, Iffland J (2000) Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore model. Pure Appl Geophys 157(4):603–619

    Article  Google Scholar 

  • Peng X, Boming Y (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81

    Article  Google Scholar 

  • Pillsbury AF, Appleman D (1950) Effects of particle size and temperature on the permeability of sand to water. Soil Sci 70:299–300

    Article  Google Scholar 

  • Pisani L (2011) Simple expression for the tortuosity of porous media. Transp Porous Media 88(2):193–203

    Article  Google Scholar 

  • Poulsen TG, Moldrup P, Jacobsen OH (1998) One-parameter models for unsaturated hydraulic conductivity. Soil Sci 163:425–435

    Article  Google Scholar 

  • Powers MC (1953) A new roundness scale for sedimentary particles. J Sedim Petrol 23(2):117–119

    Google Scholar 

  • Prakash K, Sridharan A (2002) Determination of liquid limit from equilibrium sediment volume. Géotechnique 52(9):693–696

    Google Scholar 

  • Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data to determine soil hydraulic properties. Soil Science Soc Am J 49(4):831–836

    Article  Google Scholar 

  • Rajani BB (1988) A simple model for describing variation in permeability with porosity for unconsolidated sands. In Situ 12:209–226

    Google Scholar 

  • Randolph BW, Cai J, Heydinger AG, Gupta JD (1996) Laboratory study of hydraulic conductivity for coarse aggregate bases. Transp Res Rec 1519:19–27

    Article  Google Scholar 

  • Rawls WJ, Brakensiek DL, Logsdon SD (1993) Predicting saturated hydraulic conductivity utilizing fractal principles. Soil Science Soc Am J 57:1193–1197

    Article  Google Scholar 

  • Raymond GP (1966) Laboratory consolidation of some normally consolidated soils. Can Geotech J 3(4):217–234

    Article  Google Scholar 

  • Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong TF (eds) Fault Mechanics and Transport properties of Rocks, Academic Press, pp 475–503

  • Richards LA (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333

    Article  Google Scholar 

  • Rittenhouse G (1943) A visual method of estimating two dimensional sphericity. J Sedim Petrol 13:79–81

    Google Scholar 

  • Ross J, Ozbek M, Pinder GE (2007) Hydraulic conductivity estimation via fuzzy analysis of grain size data. Math Geol 39:765–780

    Article  Google Scholar 

  • Sällfors G, Öberg-Högsta AL (2002) Determination of hydraulic conductivity of sand-bentonite mixtures for engineering purposes. Geotech Geol Eng 20(1):65–80

    Article  Google Scholar 

  • Samarasinghe AM, Huang YHF, Drnevich P (1982) Permeability and consolidation of normally consolidated soils. ASCE J Geotech Eng Div 108(6):835–850

    Google Scholar 

  • Santamarina JC, Klein KA, Wang YH, Prencke E (2002) Specific surface area: determination and relevance. Can Geotech J 39:233–241

    Article  Google Scholar 

  • Schaap MG, Fj Leij, van Genuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Soc of Amer J 62(4):847–855

    Article  Google Scholar 

  • Schaap MG, Fj Leij, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176

    Article  Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media, 3rd edn. Univ Toronto Press, Toronto, Ont

    Google Scholar 

  • Scholes ON, Clayton SA, Hoadley AFA, Tiu C (2007) Permeability anisotropy due to consolidation of compressible porous media. Transp Porous Media 68:365–387

    Article  Google Scholar 

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37(6):904–919

    Article  Google Scholar 

  • Seelheim F (1880) Methoden zur Bestimmung der Durchlässigkeit des Bodens. Z Anal Chem 19:387–402

    Article  Google Scholar 

  • Sepaskhah AR, Tabarzad A, Fooladmand RH (2010) Physical and empirical models for estimation of the specific surface area of soils. Arch Agron Soil Sci 56(3):325–335

    Google Scholar 

  • Sezer A, Göktepe AB, Altun S (2009) Estimation of the permeability of granular soils using neuro-fuzzy system. In: AIAI-2009 Workshops Proc, pp 333–342

  • Shahabi AA, Das BM, Tarquin AJ (1984) Empirical relation for coefficient of permeability of sand. In: Nat Conf Pub, Inst of Engineers, Australia, 84(2):54–57

  • Shahnazari MR, Vahabikashi A (2011) Permeability prediction of porous media with variable porosity by injection of Stokes flow over multi-particles. J of Porous Media 14(3):243–250

    Article  Google Scholar 

  • Shepherd RG (1989) Correlations of permeability and grain size. Ground Water 27(5):633–638

    Article  Google Scholar 

  • Sherard JL (1979) Sinkholes in dams of coarse, broadly graded soils. In: Trans 13th Int Congress on Large Dams, New Delhi, India, ICOLD, Paris, vol 2, pp 25–35

  • Shou D, Jintu F, Feng D (2011) Hydraulic permeability of fibrous porous media. Int J Heat Mass Transf 54(17–18):4009–4018

    Article  Google Scholar 

  • Siddique A, Safiullah AMM (1995) Permeability characteristics of reconstituted Dhaka clay. J Civil Eng Div Inst Eng Bangladesh CE23(1):103–115

    Google Scholar 

  • Sims JE, Elsworth D, Cherry JA (1996) Stress-dependent flow through fractured clay till: a laboratory study. Can Geotech J 33:449–457

    Article  Google Scholar 

  • Singh PN, Wallender WW (2008) Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation. J Geotech Geoenv Eng 134(6):829–836

    Article  Google Scholar 

  • Singh S, Seed HB, Chan CK (1982) Undisturbed sampling of saturated sands by freezing. ASCE J of the Geotech Engng Div 108(2):247–264

    Google Scholar 

  • Sivappulaiah PV, Sridharan A, Stalin VK (2000) Hydraulic conductivity of bentonite-sand mixtures. Can Geotech J 37(2):712–722

    Article  Google Scholar 

  • Sivappulaiah PV, Prasad BG, Allam MM (2008) Methylene Blue surface area method to correlate with specific soil properties. Geotech Testing J 31(6):503–512

    Google Scholar 

  • Slichter CS (1898) Theoretical investigation of the motion of ground waters. US Geological Survey, 19th Annual Report, 2:295–384

  • Sperry MS, Pierce JJ (1995) A model for estimating the hydraulic conductivity of granular material based on grain size, and porosity. Ground Water 33(6):892–898

    Article  Google Scholar 

  • Sridharan A, Nagaraj HB (2005) Hydraulic conductivity of remolded fine-grained soils versus index properties. Geotech Geol Eng 23:43–60

    Article  Google Scholar 

  • Sridharan A, Rao SM, Murphy NS (1986) Liquid limit of montmorillonite soils. Geotech Testing J 9(3):156–159

    Article  Google Scholar 

  • Sridharan A, Rao SM, Murphy NS (1988) Liquid limit of kaolinitic soils. Géotechnique 38(2):191–198

    Article  Google Scholar 

  • Stepkowska ET, Thorborg B, Wichman B (1995) Stress state-permeability relationships for dredged sludge and their dependence on microstructure. Géotechnique 45(2):307–316

    Article  Google Scholar 

  • Summers WK, Weber PA (1984) The relationship of grain-size distribution and hydraulic conductivity: an alternate approach. Ground Water 22(4):474–475

    Article  Google Scholar 

  • Sun Z, Logé RE, Bernacki M (2010) 3D finite element model of semi-solid permeability in an equiaxed granular structure. Comput Mater Sci 49:158–170

    Article  Google Scholar 

  • Tan SA (1989) A simple automatic falling head permeameter. Soils Found 29(1):161–164

    Article  Google Scholar 

  • Tanaka H (2000) Sample quality of cohesive soils: lessons from three sites, Ariake, Bothkennar and Drammen. Soils Found 40(4):57–74

    Article  Google Scholar 

  • Tanaka H, Locat J, Shibuya S, Tan TS, Shiwakoti DR (2001) Characterization of Singapore, Bangkok and Ariake clays. Can Geotech J 38:378–400

    Article  Google Scholar 

  • Tanaka H, Shiwakoti DR, Omukai N, Rito F, Locat J, Tanak M (2003) Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity. Soils Found 43(6):63–73

    Article  Google Scholar 

  • Tavenas F, Jean P, Leblond P, Leroueil S (1983a) The permeability of natural soft clays. Part I: methods of laboratory measurement. Can Geotech J 20(4):629–644

    Article  Google Scholar 

  • Tavenas F, Jean P, Leblond P, Leroueil S (1983b) The permeability of natural soft clays. Part II: permeability characteristics. Can Geotech J 20(4):645–660

    Article  Google Scholar 

  • Tavenas F, Jean P, Leblond P, Leroueil S (1984) The permeability of natural soft clays. Part II: permeability characteristics: reply. Can Geotech J 21:731–732

    Article  Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics. John Wiley & Sons, New York

    Google Scholar 

  • Terzaghi K (1922a) Erdbaumechanik auf Bodenphysicalisher Grundlagen. Franz Deuticke, Leipzig and Wien

    Google Scholar 

  • Terzaghi K (1922b) Soil failure at barrages and its prevention (in German). Die Wasserkraft, Special Forchheimer Issue, p 445

  • Terzaghi C (1925) Principles of soil mechanics: III. Determination of permeability of clay. Engineering News Records, 95(21):832–836

  • Terzaghi KT (1943) Theoretical Soil Mechanics. Wiley, New York

    Book  Google Scholar 

  • Tickell FG, Hiatt WN (1938) Effects of the angularity of grain on porosity and permeability of unconsolidated sands. Bull Am Ass Petrol Geol 22(9):1272–1274

    Google Scholar 

  • Tokunaga TK (1988) Laboratory permeability errors from annular wall flow. Soil Sci Soc Am J 52(1):24–27

    Article  Google Scholar 

  • Trani LDO, Indraratna B (2010) The use of particle size distribution by surface area method in predicting the saturated hydraulic conductivity of graded granular soils. Géotechnique 60(12):957–962

    Article  Google Scholar 

  • Uma KO, Egboka BCE, Onuoha KM (1989) New statistical grain-size method for evaluating the hydraulic conductivity of sandy aquifers. J Hydrol 108:343–366

    Article  Google Scholar 

  • Vaid YP, Sivathalayan S (2000) Fundamental factors affecting liquefaction susceptibility of sand. Can Geotech J 37(3):592–606

    Article  Google Scholar 

  • Valdes-Pareda FJ, Ochoa-Tapia JA, Alvarez-Amirez JA (2009) Validity of the permeability Carman-Kozeny equation: a volume averaging approach. Phys A 388:789–798

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-for equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vereecken H, Maes J, Feyen J (1990) Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci 149:1–12

    Article  Google Scholar 

  • Vidal D, Ridgway C, Piant G, Schoelkopf J, Roy R, Bertrand F (2009) Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-Boltzmann simulations. Comp Chem Eng 33:256–266

    Article  Google Scholar 

  • Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain size data. J Hydrol 400:58–71

    Article  Google Scholar 

  • Vogel HJ, Roth K (1988) A new approach for determining effective soil hydraulic functions. European J of Soil Sci 49(4):546–547

    Google Scholar 

  • Vuković M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, CO

    Google Scholar 

  • Wadell H (1933) Sphericity and roundness of rock particles. J Geol 41:310–331

    Article  Google Scholar 

  • Wadell H (1935) Volume, Shape and Roundness of Quartz Particles. J Geol 43:250–280. doi:10.1086/624298

    Article  Google Scholar 

  • Walder J, Nur A (1984) Porosity reduction and crustal pore pressure development. J Geophys Res 89:11539–11548

    Article  Google Scholar 

  • Wiebenga WA, Ellis WR, Kevi L (1970) Empirical relations in properties of unconsolidated quartz sands and silts pertaining to water flow. Water Res Res 6:1154–1161

    Article  Google Scholar 

  • Windisch SJ, Soulié M (1970) Technique for study of granular materials. ASCE J Soil Mech Found Div 96(4):1113–1126

    Google Scholar 

  • Wosten JHM, van Genuchten MT (1988) Using texture and other soil properties to predict the unsaturated hydraulic functions. Soil Sci Soc Am J 52:1762–1770

    Article  Google Scholar 

  • Wyckoff RD, Botset HG (1936) The flow of gas-liquid mixtures through unconsolidated sands. Physics 7:325–345

    Article  Google Scholar 

  • Wyllie MRJ, Gardner GHF (1958a) The generalized Kozeny–Carman equation: part I. World Oil 146(4):121–126

    Google Scholar 

  • Wyllie MRJ, Gardner GHF (1958b) The generalized Kozeny–Carman equation: part II. World Oil 146(5):210–228

    Google Scholar 

  • Yang Y, Aplin AC (1998) Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin. Mar Pet Geol 15:163–175

    Article  Google Scholar 

  • Yang Y, Aplin AC (2007) Permeability and petrophysical properties of 30 natural mudstones. J Geophys Res 112 B03206 a. doi:10.1029/2005JB004243round

  • Yang Y, Aplin AC (2010) A permeability-porosity relationship for mudstones. Marine Petrol Geol 27:1692–1697

    Article  Google Scholar 

  • Yazdchi K, Srivastava S, Luding S (2011) Microstructural effects on the permeability of periodic fibrous porous media. Int J Multiph Flow. doi:10.1016/j.ijmultiphaseflow.2011.05.003

    Google Scholar 

  • Youd TL (1973) Factors controlling maximum and minimum densities of sands. In: Selig ET, Ladd RS (eds), ASTM STP523, pp 98–112

  • Yu AB, Standish N (1987) Porosity calculation of multi-component mixtures of particles. Powder Tech 52:1–12

    Article  Google Scholar 

  • Yukselen-Aksoy Y, Kaya A (2006) Comparison of methods for determining specific surface area of soils. J Geotech Geoenv Eng 132:931–936

    Article  Google Scholar 

  • Yukselen-Aksoy Y, Kaya A (2010) Method dependency of relationships between specific surface area and physicochemical properties. Appl Clay Sci 50(2):182–190

    Article  Google Scholar 

  • Zeng LL, Hong ZS, Cai YQ, Han J (2011) Change of hydraulic conductivity during compression of undisturbed and remolded clay. Appl Clay Sci 51:86–93

    Article  Google Scholar 

  • Zunker F (1932) Zeitschrift fur Pflanzeneraehrung. Duengung und Bodenkunde A25:1

    Google Scholar 

Download references

Acknowledgments

This paper is a result of a research program sponsored by the Natural Sciences and Engineering Council of Canada to improve the reliability of permeability and aquifer tests. The author thanks A. Gatien, M. Benabdallah, F. Réginensi, M. Pérez, and many summer students for their help in testing soil specimens, A. Yelon, S. Weber, and F. Duhaime for their help in checking the manuscript and the proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Chapuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, R.P. Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71, 401–434 (2012). https://doi.org/10.1007/s10064-012-0418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0418-7

Keywords

Mots clés

Navigation