Skip to main content
Log in

Prediction of expansive soil swelling based on four micro-scale properties

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

A comprehensive study of expansive soil behavior includes understanding the surface phenomena of clay particles within the soil matrix. This research studies four micro-scale properties of four remolded expansive soils––matric suction, pH, surface conductance and percentage of montmorillonite––in order to predict soil swelling. An approach to approximate surface conductance is presented. Linear regression analyses were undertaken in an attempt to predict percent swell and swell pressure based on each of these micro-scale properties. Matric suction was found to be the most accurate predictor of the swelling behavior of the studied soils, which were initially compacted at optimum moisture content. Surface conductance, which is a combination of specific surface area, cation exchange capacity and cation mobility, also gave good predictions, except for one soil with high acidity.

Résumé

Une étude approfondie du comportement des sols gonflants inclut la compréhension des phénomènes de surface concernant les particules argileuses au sein de la matrice du sol. Cette recherche s’intéresse à quatre propriétés de micro-échelle de quatre sols gonflants remaniés : succion matricielle, pH, conductivité de surface et pourcentage de montmorillonite, afin de prévoir le gonflement du sol. Une méthode permettant d’approcher la valeur de conductivité de surface est présentée. Des analyses de régression linéaire ont été réalisées, basées sur chacune des propriétés de micro-échelle, afin de prévoir le potentiel de gonflement et la pression de gonflement. La succion matricielle a été identifiée comme le meilleur paramètre pour prévoir le comportement gonflant des sols étudiés qui avaient été initialement compactés à la teneur en eau optimum. La conductivité de surface, qui intègre la valeur de surface spécifique, la capacité d’échange de cations et la mobilité cationique a donné également de bonnes prévisions, sauf pour l’un des sols de forte acidité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Al-Rawas A (1999) The factors controlling the expansive nature of the soils and rocks of northern Oman. Eng Geol 53:327–350

    Article  Google Scholar 

  • Al-Rawas AA, McGown A (1999) Microstructure of Omani expansive soils. Can Geotech J 36:272–290

    Article  Google Scholar 

  • Armstrong JC, Petry TM (1986) Significance of specimen preparation upon soil plasticity. Geotech Test J 9:147–153

    Article  Google Scholar 

  • ASTM (1999) 1999 Annual book of ASTM standards. Volume 04.08, soil and rock (I): D420–D4914, West Conshohocken, Pennsylvania

  • Brasher BR, Franzmeier DP, Valassis P, Davidson SE (1966) Use of saran resin to coat natural soil clods for bulk density and water retention measurements. Soil Sci 101(2):108

    Article  Google Scholar 

  • Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene (EGME) method. Geotech Test J 25(3):315–321

    Google Scholar 

  • Chen FH (1988) Foundations on expansive soils. American Elsevier Science Publication, New York

    Google Scholar 

  • Delage P, Howat M, Cui YJ (1998) The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50(1–2):31–48

    Article  Google Scholar 

  • Du Y, Li S, Hayashi S (1999) Swelling–shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang highway, China. Eng Geol 53:351–358

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  • Fredlund DG, Xing A (1994) Equations for the soil–water characteristic curve. Can Geotech J 31(3):521–532

    Article  Google Scholar 

  • Garbulewski K, Zakowicz S (1995) Suction as an indicator of soil expansive potential. In: Alonso EE, Delage P (eds) Proceedings of the first international conference on unsaturated soils, Paris, vol 2, pp 505–512

  • Holtz WG, Gibbs HJ (1956) Engineering properties of expansive clays. Trans ASCE 121:641–677

    Google Scholar 

  • Kassiff G, Livneh M, Wiseman G (1969) Pavements on expansive clays. Jerusalem Academic Press, Jerusalam

    Google Scholar 

  • Klein K, Santamarina JC (2003) Electrical conductivity in soils: underlying phenomena. J Environ Eng Geophys 8(4):263–273

    Article  Google Scholar 

  • Lambe TW (1960) The character and identification of expansive soils, soil PVC meter. Federal housing administration, technical studies program, FHA 701

  • Mckeen RG (1992) A model for predicting expansive soil behavior. In: Proceedings of the 7th international conference on expansive soils, Dallas, vol 1, pp 1–6

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  • Nelson JD, Miller DJ (1992) Expansive soils: problems and practice in foundation and pavement engineering. Wiley, New York

    Google Scholar 

  • Ning L (2007) Soil and site characterization using electromagnetic waves. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

  • Peterson LW, Moldrup P, Jacobsen OH, Rolston DE (1996) Relations between specific surface area and soil physical and chemical properties. Soil Sci 161(1):9–21

    Article  Google Scholar 

  • Raman V (1967) Identification of expansive soils from the plasticity index and the shrinkage index data. Indian Eng Calcutta 11(1):17–22

    Google Scholar 

  • Rhoades JD (1982) Cation exchange capacity. In: Page AL et al (eds) Methods of soil analysis, agronomy 9, 2nd edn. American Society of Agronomy, Madison, pp 159–165

    Google Scholar 

  • Santamarina JC, Klein K, Fam M (2001) Soils and waves: particle materials behavior, characterization and process monitoring. Wiley, Chichester

    Google Scholar 

  • Shi B, Jiang H, Liu Z, Fang HY (2002) Engineering geological characteristics of expansive soils in China. Eng Geol 67:63–71

    Article  Google Scholar 

  • Skempton AW (1953). The colloidal activity of clays. In: Proceedings of the 3rd International conference of soil mechanics and foundation engineering, Switzerland, vol 1, pp 57–61

  • USGS Open-File Report (2001) A laboratory manual for X-ray powder diffraction, http://pubs.usgs.gov/of/2001/of01-041/

  • Yoder EJ, Witczak MW (1975) Principles of pavement design, 2nd edn. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the National Science Foundation (Grant No. 0746980). The support is greatly appreciated. The authors are also thankful to Dr. Madden at the University of Oklahoma for his help on the XRD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy B. Cerato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, B., Cerato, A.B. Prediction of expansive soil swelling based on four micro-scale properties. Bull Eng Geol Environ 71, 71–78 (2012). https://doi.org/10.1007/s10064-011-0410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0410-7

Keywords

Mots clés

Navigation