Skip to main content
Log in

Effect of artificial cementation on cone tip resistance and small strain shear modulus of sand

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

A series of cone penetration and bender element tests were performed on sands artificially cemented with gypsum in a calibration chamber to investigate the effect of cementation on the cone tip resistance (q c) and small strain shear modulus (G max) of sand. It was found that both the q c and G max of cemented sand are significantly affected by the degree of cementation while the effects of stress and density are reduced due to the cementation bonds. As the degree of cementation increases, the relationship between the \( q_{{\text{c}}} {-}D_{{\text{R}}} {-}\sigma _{{\text{v}}}^{\prime } \) of cemented sand is observed to be similar to that of quartz sand with low compressibility. As the density and stress level affect q c more significantly than G max, the G max/q c of cemented sand decreases with increasing q c. However, as the cementation causes a larger increase in G max than q c, the G max/q c ratio of cemented sand increases as the gypsum content increases. It was also observed from the \( G_{{\max }} /q_{{\text{c}}} - (q_{{\text{c}}} /p_{{\text{a}}} )(p_{{\text{a}}} /\sigma _{{\text{v}}}^{\prime } )^{{0.5}} \) relation that the G max/q c ratio of cemented sand locates above the upper bound suggested by previous studies.

Résumé

Une série de tests de pénétration au cône et de flexion a été réalisée dans une chambre de calibration sur des sables artificiellement cimentés par du gypse afin d’étudier les effets de la cimentation sur la résistance de pointe (q c) et le module de cisaillement en faibles déformations (G max). Il a été trouvé que les deux paramètres q c et G max sont significativement affectés par le degré de cimentation tandis que les effets de contrainte et de densité sont réduits du fait des liens de cimentation. Alors que le degré de cimentation augmente, la relation entre \( q_{{\text{c}}} {-}D_{{\text{R}}} {-}\sigma _{{\text{v}}}^{\prime } \) de sables cimentés apparaît semblable à celle de sables quartzeux de faible compressibilité. Alors que la densité et le niveau de contrainte affectent q c plus significativement que G max, le rapport G max/q c de sables cimentés décroît avec l’augmentation de q c. Cependant, alors que la cimentation entraîne une plus forte augmentation de G max que de q c, le rapport G max/q c de sables cimentés augmente avec l’augmentation de la teneur en gypse. Il a été aussi observé à partir de la relation \( G_{{\max }} /q_{{\text{c}}} - (q_{{\text{c}}} /p_{{\text{a}}} )(p_{{\text{a}}} /\sigma _{{\text{v}}}^{\prime } )^{{0.5}} \) que le rapport G max/q c de sables cimentés est supérieur à une limite suggérée par de précédentes études.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acar YB, El-Tahir EA (1986) Low strain dynamic properties of artificially cemented sand. J Geotech Eng 112(11):1001–1015

    Article  Google Scholar 

  • Baig S, Picornell M, Nazarian S (1997) Low strain shear moduli of cemented sands. J Geotech Geoenviron Eng 123(6):540–545

    Article  Google Scholar 

  • Baldi G, Bellotti R, Ghionna V, Jamiolkowski M, Pasqualini E (1986) Interpretation of CPTs and CPTUs; Part II. Drained penetration of sands. In: Proceedings of 4th international geotechnical seminar on field instrumentation and in situ measurements. Nanyang Technological Institute, Singapore, pp 143–156

  • Choi SK, Lee MJ, Choo H, Tumay MT, Lee W (2010) Preparation of a large size granular specimen using a rainer system with a porous plate. Geotech Testing J 33(1):1–10

    Google Scholar 

  • Coop MR, Atkinson JH (1993) The mechanics of cemented carbonate sands. Geotechnique 43(1):53–67

    Article  Google Scholar 

  • Fonseca AV, Silva SR, Cruz N (2010) Geotechnical characterization by in situ and lab tests to the back-analysis of a supported excavation in Metro do Porto. J Geotech Geol Eng 28(3):251–264

    Google Scholar 

  • Giacheti HL, Mio GD (2008) Seismic cone tests in tropical soils and the G0/qc ratio. In: Huang AB, Mayne PW (eds) In: Proceedings 3rd international conference on site characterization (ISC’3). Taipei, Taiwan, pp 1289–1295

  • Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Soil Mech Found Eng Div 89(SM1):33–65

    Google Scholar 

  • Ismail MA, Joer HA, Sim WH, Randolph MF (2002) Effect of cement type on shear behavior of cemented calcareous soil. J Geotech Geoenviron Eng 128(6):520–529

    Article  Google Scholar 

  • Iwasaki T, Tatsuoka F, Takagi Y (1978) Shear moduli of sands under cyclic torsional shear loading. Soils Found 18(1):39–56

    Google Scholar 

  • Jamiolkowski M, Ladd CC, Germaine JT, Lancellotta R (1985) New developments in field and laboratory testing of soils. In: Proceedings of 11th international conference on soil mechanics and foundation engineering, Balkema Pub., Rotterdam, pp 57–153

  • Jamiolkowski M, Ghionna VN, Lancellotta R, Pasqualini E (1988) New correlation of penetration tests for design practice. In: De Ruiter J (ed) Proceedings of 1st ISOPT. Balkema Pub, Rotterdam, pp 263–296

  • Khan Z, Majid A, Cascante G, Hutchinson DJ, Pezeshkpour P (2006) Characterization of a cemented sand with the pulse-velocity method. Can Geotech J 43(3):294–309

    Article  Google Scholar 

  • Lee JS (2003) High resolusion geophysical techniques for small scale model testing. Ph.D. thesis, Civil Engineering, Georgia Institute of Technology, Atlanta

  • Lee JS, Santamarina JC (2005) Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng 131(9):1063–1070

    Article  Google Scholar 

  • Lee MJ, Choi SK, Lee W (2009) Shear strength of artificially cemented sands. Mar Georesour Geotechnol 27(3):201–216

    Article  Google Scholar 

  • Lo Presti DCF, Jamiolkowski M, Pallara O, Cavallaro A, Pedroni S (1997) Shear modulus and damping of soils. Geotechnique 47(3):603–617

    Article  Google Scholar 

  • Mayne PW, Rix GJ (1995) Correlations between shear wave velocity and cone tip resistance in natural clays. Soils Found 35(2):107–110

    Google Scholar 

  • Mohsin AKM, Airey DW (2005) Influence of cementation and density on G max for sand. In: Proceedings of 16th international conference on soil mechanics foundation engineering. Millpress, Rotterdam, pp 413–416

  • Monaco P, Marchetti S (2007) Evaluation liquefaction potential by seismic dilatometer (SDMT) accounting for aging/stress history. In: Proceedings of 4th international conference on earthquake geotechical engineering. Thessaloniki, Greece, Paper No. 1626

  • Parkin AK, Lunne T (1982) Boundary effects in the laboratory calibration of a cone penetrometer in sand. In: Verruijt A, Beringen FL, de Leeuw EH (eds) Proceedings of 2nd ESOPT. Balkema, Rotterdam, pp 221–243

  • Puppala AJ, Acar YB, Tumay MT (1995) Cone penetration in very weakly cemented sand. J Geotech Eng 121(8):589–600

    Article  Google Scholar 

  • Puppala AJ, Acar YB, Tumay MT (1996) Low strain dynamic shear modulus of cemented sand from cone penetration test results. Transp Res Rec 1548:60–66

    Article  Google Scholar 

  • Rad NS, Tumay MT (1986) Effect of cementation on the cone penetration resistance of sand. In: Clemence SP (ed) Use of in situ tests in geotech eng. ASCE GSP 6, pp 926–948

  • Rix GJ, Stokoe KH (1991) Correlation of initial tangent modulus and cone resistance. In: Huang AB (ed) Proceedings of international symposium on calibration chamber testing. Elsevier, New York, pp 351–362

  • Santamarina JC, Klein KA, Fam MA (2001) Soils and waves–particulate materials behavior, characterization and process monitoring. Wiley, New York

    Google Scholar 

  • Saxena S, Avramidis AS, Reddy KR (1988) Dynamic moduli and damping ratio for cemented sands at low strains. Can Geotech J 25(2):353–368

    Article  Google Scholar 

  • Schnaid F, Lehane BM, Fahey M (2004) In situ test characterization of unusual geomaterials. In: Proceedings of 2nd international conference on site characterization, Millpress, Porto, pp 49–74

  • Viggiani G, Atkinson JH (1995) Interpretation of bender element tests. Geotechnique 45(1):149–154

    Article  Google Scholar 

  • Yun TS, Santamarina JC (2005) Decementation, softening, and collapse: changes in small-strain shear stiffness in K 0 loading. J Geotech Geoenviron Eng 131(3):350–358

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Construction Core Technology Program (C104A1000009-06A0200-00800) under the KICTEP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MJ., Choo, H., Kim, J. et al. Effect of artificial cementation on cone tip resistance and small strain shear modulus of sand. Bull Eng Geol Environ 70, 193–201 (2011). https://doi.org/10.1007/s10064-010-0312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-010-0312-0

Keywords

Mots clés

Navigation