The Third Hans Cloos Lecture. Urban landslides: socioeconomic impacts and overview of mitigative strategies

  • Robert L. Schuster
  • Lynn M. Highland
Original Paper


As a result of population pressures, hillsides in the world’s urban areas are being developed at an accelerating rate. This development increases the risk for urban landslides triggered by rainfall or earthquake activity. To counter this risk, four approaches have been employed by landslide managers and urban planners: (1) restricting development in landslide-prone areas; (2) implementing and enforcing excavation, grading, and construction codes; (3) protecting existing developments by physical mitigation measures and (4) developing and installing monitoring and warning systems. Where they have been utilized, these approaches generally have been effective in reducing the risk due to landslide hazards. In addition to these practices, landslide insurance holds promise as a mitigative measure by reducing the financial impact of landslides on individual property owners. Until recently, however, such insurance has not been widely available and, where it is available, it is so expensive that it has been little used.


Urban areas Landslides Mitigative measures Grading codes Early warning Landslide insurance 


Sous l’effet de la pression démographique, les zones urbaines s’étendent et les pentes avoisinantes sont souvent occupées à un rythme de plus en plus rapide. Ce développement urbain augmente le risque de glissements de terrain, déclenchés par des pluies ou des séismes. Pour contrecarrer ce risque, quatre approches ont été mises en œuvre par les experts en glissements de terrain et les spécialistes de l’aménagement de l’espace: (1) la limitation du développement urbain sur les zones sujettes à glissements de terrain; (2) la mise en œuvre et le renforcement des règles techniques relatives aux travaux d’excavation, de nivellement des terrain et de construction; (3) la protection des constructions existantes par des techniques permettant de limiter les dommages éventuels à venir; (4) le développement et l’installation de systèmes de surveillance et d’alerte. Lorsque ces approches ont été mises en œuvre, elles ont généralement apporté des résultats dans la réduction des risques liés aux glissements de terrain. En plus de ces pratiques, l’assurance contre les glissements de terrain représente une démarche prometteuse en réduisant l’impact financier des glissements sur les propriétaires particuliers. Jusqu’à une période récente, cependant, de telles assurances n’étaient pas largement répandues et lorsqu’il est possible aujourd’hui de s’assurer, les coûts sont si importants que l’assurance est peu utilisée.

Mots clés

Zones urbaines Glissements de terrain Mesures de limitation des effets Codes techniques de terrassement Systèmes de surveillance et d’alerte Assurance contre les glissements de terrain 


  1. Acosta J (1846) Relation de l’eruption bouese du volcan del Ruiz et de la catastrophe de Lagunilla dans la Republique de Nouvelle Granada. In: Comptes Rendus, Academy of Sciences, Paris, 22:709–710Google Scholar
  2. Aleman M (2001) Rescuers flee aftershocks—search resumes for hundreds in El Salvador. The Denver Post, Denver, Colorado, 15 January: p. 1A, 18AGoogle Scholar
  3. Association of Engineering Geologists (1984) Southern California—section news. Newsletter 27(3):34Google Scholar
  4. Baker RF, Marshall HC (1958) Control and correction. In: Eckel EB (eds) Landslides and engineering practice. Highway Research Board Special Report 29, National Academy of Sciences-National Research Council Publication 544, Washington, DC, pp. 150–188Google Scholar
  5. Barata FE (1969) Landslides in the tropical region of Rio de Janeiro. In: Proceedings of 7th international conference on soil mechanics and foundation engineering, Mexico City 2: 507–516Google Scholar
  6. Bodenlos AJ, Ericksen GE (1955) Lead-zinc deposits of the Cordillera Blanca and Cordillera Huayhuash, Peru. US Geological Survey Bulletin 1017, 166 ppGoogle Scholar
  7. Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of 4th international symposium on landslides, Toronto, 16–21 September 1984, 1:307–323Google Scholar
  8. Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo County, California. US Geological Survey Miscellaneous Field Studies Map MF-360, scale 1:62,500Google Scholar
  9. Brand EW (1984) Landslides in Southeast Asia: a state-of-the-art report. In: Proceedings of 4th international symposium on landslides, Toronto, 16–21 September 1984, 1:17–59Google Scholar
  10. Brand EW (1985) Predicting the performance of residual soil slopes. In: Proceedings of 11th international conference on soil mechanics and foundation engineering, San Francisco, 12–16 August 1985, 5:2541–2578Google Scholar
  11. Brand EW (1999) Landslides in Hong Kong caused by the severe rainfall event of 8 May 1992. In: Sassa K (ed) Landslides of the world. Kyoto University Press, Kyoto, pp 195–198Google Scholar
  12. Campbell, RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, Southern California. US Geological Survey Professional Paper 851, 51 ppGoogle Scholar
  13. Clark AR, Moore R, Palmer JS (1996) Slope monitoring and early warning systems: application to coastal landslides on the south and east coast of England, UK. In: Senneset, K (ed) Landslides. Proceedings, 7th international symposium on landslides, Trondheim, 17–21 June 1996, 1:1531–1538Google Scholar
  14. Cluff LS (1971) Peru earthquake of May 31, 1970: engineering geology observations. Seismol Soc Am Bull 61(3):511–521Google Scholar
  15. Commission of Inquiry (1980) Report of the Commission of Inquiry into the Abbotsford landslip disaster. New Zealand Government Printer, Wellington, p 196Google Scholar
  16. Committee on Ground Failure Hazards (1985) Reducing losses from landsliding in the United States. US National Research Council, Commission on Engineering and Technical Systems, Washington, DC, 41 ppGoogle Scholar
  17. Committee on the Review of the National Landslide Hazards Mitigation Strategy (2004) Partnerships for reducing landslide risk. National Research Council, Washington, DC, 131 ppGoogle Scholar
  18. Community Development Department (2006) Salem landslide hazard regulations summary. City of Salem, Oregon, USA. <∼naturalr/Landslides/landslide_summary.htm>
  19. (2005) Hurricane season is time to review insurance coverage. <>
  20. Da Costa Nunes AJ, Costa Couto e Fonseca AMM, Hunt RE (1979) Landslides of Brazil, chap 11. In: Voight B (ed) Rockslides and avalanches, 2: engineering sites. Elsevier, New York, pp 419–446Google Scholar
  21. D’Orsi RN, Feijó RL, Paes, NM (2004) 2,500 operational days of Alerto Rio System: history and technical improvements of Rio de Janeiro Warning System for severe weather. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayão ASF (eds) Landslides, Proceedings, 9th international symposium on landslides, 1:831–836Google Scholar
  22. Eisbacher GH, Clague JJ (1984) Destructive mass movements in high mountains: hazard and management. Geological Survey of Canada Paper 84–16, 230 ppGoogle Scholar
  23. Ellen SD, Wieczorek GF, Brown WM III, Herd DG (1988) Introduction. In: Ellen SD, Wieczorek GF (eds) Landslides, floods, and marine effects of the storm of 3–5 January 1982 in the San Francisco Bay Region, California. US Geological Survey Professional Paper 1434, pp 1–5Google Scholar
  24. Ericksen GE, Ramirez CF, Fernandez Concha J, Tisnado G, Urquidi F (1989) Landslide hazards in central and southern Andes. In: Brabb EE, Harrod BL (eds) Landslides: extent and economic significance. Proceedings, 28th international geological congress, symposium on landslides, Washington, DC, 17 July 1989, pp 111–117Google Scholar
  25. Erley D, Kockelman WJ (1981) Reducing landslide hazards—a guide for planners. American Planning Association, Planning Advisory Service Report 359, 29 ppGoogle Scholar
  26. Garcia M (1988) Eventos catastroficos del 13 de Noviembre de 1985. Boletin de Vias, University Nacional de Colombia, Seccion Manizales, Bogota 15(65):7–106Google Scholar
  27. Geotechnical Control Office (1979) Geotechnical manual for slopes. Public Works Department Hong Kong, 228 ppGoogle Scholar
  28. Godt JW, Coe JA, Savage WZ (2000) Relation between cost of damaging landslides and construction age, Alameda County, California, USA, El Niño winter storm season, 1997–98. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides, Proceedings of 8th international symposium on landslides, Cardiff, Wales, 26–30 June 2000, 2:641–646Google Scholar
  29. Griggs, GW (2006) State to study La Conchita’s slide problem—the governor sets aside $667,000 to see whether future incidents can be prevented. Los Angeles Times, 31 March 2006Google Scholar
  30. Hamilton County Regional Planning Commission (1976) Hillside development study—hillside development plan and strategy. Regional Planning Commission , Hamilton County, Cincinnati, Ohio, 38 ppGoogle Scholar
  31. Hancox G (2002) The Abbotsford landslide—its nature and causes. Tephra 19:9–13Google Scholar
  32. Hansen WR, Eckel EB, Schaem WE, Lyle RE, George W, Chance G (1966) The Alaska earthquake of March 27, 1964—investigations and reconstruction effort. US Geological Survey Professional Paper 541, 111 ppGoogle Scholar
  33. Harp EL, Jibson RW, Savage WZ, Highland LM, Larson RA, Tan SS (1999) Landslides triggered by January and March 1995 storms in southern California. In: Sassa K (ed) Landslides of the world, Japan Landslide Society. Kyoto University Press, Kyoto, pp 268–273Google Scholar
  34. Herd DG (1986) The 1985 Ruiz volcano disaster. Eos, American Geophysical Union, 67(19):457–460Google Scholar
  35. Holtz RD, Schuster RL (1996) Stabilization of soil slopes. In: Turner AK, Schuster, RL (eds) Landslides: investigation and mitigation. National Research Council, Washington, DC, Transportation Research Board Special Report 247, pp 439–473Google Scholar
  36. Hong Kong Government (1972a) Interim report of the Commission of Inquiry into the rainstorm disasters, 1972. Hong Kong Government Printer, 22 ppGoogle Scholar
  37. Hong Kong Government (1972b) Final report of the Commission of Inquiry into the rainstorm disasters, 1972. Hong Kong Government Printer, 94 ppGoogle Scholar
  38. Hutchinson JN (1977) Assessment of the effectiveness of corrective measures in relation to geological conditions and types of slope movements. Bull Int Assoc Eng Geol 16:131–155Google Scholar
  39. Jibson RW (2005) Landslide hazards at La Conchita, California. US Geological Survey Open-File Report 2005–1067. <–067.html>
  40. Jochim CL, Rogers WP, Truby JO, Wold RL Jr, Weber G, Brown SP (1988) Colorado Landslide Hazard Mitigation Plan. Colorado Geological Survey, Department of Natural Resources, Denver, p 149Google Scholar
  41. Jones FO (1973) Landslides of Rio de Janeiro and the Serra das Araras escarpment, Brazil. US Geological Survey Professional Paper 697, 42 ppGoogle Scholar
  42. Keefer DK, Wilson RC, Mark RK, Brabb EE, Brown WM III, Ellen SD, Harp EL, Wieczorek GF, Alger CS, Zatkin RS (1987) Real-time landslide warning during heavy rainfall. Science 238:921–925CrossRefGoogle Scholar
  43. Kockelman WJ (1986) Some techniques for reducing landslide hazards. Bull Assoc Eng Geol 23(1):29–52Google Scholar
  44. Koo YC (1998) Some important aspects of design of soil slopes in Hong Kong. In: Li KS, Kay JN, Ho KKS (eds) Slope engineering in Hong Kong, Proceedings of the annual seminar on slope engineering in Hong Kong, Hong Kong. Balkema, Rotterdam, 2 May 1997, pp 21–29Google Scholar
  45. Larsen MC, Wieczorek GF, Eaton LS, Torres-Sierra H (2001) The rainfall-triggered landslide and flash flood disaster in northern Venezuela, December 1999. In: Proceedings, 7th federal interagency sedimentation conference, Reno, Nevada, 25–29 March 2001, pp IV-9–IV-16Google Scholar
  46. Legget RF (1973) Cities and geology. McGraw-Hill Book Company, New York, p 623Google Scholar
  47. Leighton FB (1975) Role of geotechnical consultants and reviewers for the County of San Mateo. Calif Geol 28(8):178–181Google Scholar
  48. Lumb P (1975) Slope failures in Hong Kong. Q J Eng Geol 8:31–65Google Scholar
  49. Mader GG, Crowder DJ (1971) An experiment in using geology for city planning—the experience of the small community of Portola Valley. In: Environmental planning and geology, US Department of Housing and Urban Development, US Geological Survey, and Office of Research and Technology, Washington, DC, pp 176–189Google Scholar
  50. Mader GG, Spangle WE, Blair ML (1980) Land use planning after earthquakes. William Spangle and Associates, Inc., Portola Valley, p 24Google Scholar
  51. Mader GG, Vlasic TC, Gregory PA (1988) Geology and planning: the Portola Valley experience. William Spangle and Associates, Inc., Portola Valley, p 75Google Scholar
  52. Malone AW (1998) Risk management and slope safety in Hong Kong. In: Li KS, Kay JN, Ho KKS (eds), Slope engineering in Hong Kong, Proceedings of the annual seminar on slope engineering in Hong Kong, Hong Kong. Balkema, Brookfield, 2 May 1997, pp 3–17Google Scholar
  53. Marin-Nieto L (2003) Rainfall-landslide relationship during El Niño. In: Culligan PJ, Einstein HH, Whittle AJ (eds) Soil and rock America 2003, Proceedings, 12th Panamerican conference on soil mechanics and geotechnical engineering. Cambridge, Massachusetts, 22–26 June 2003, 2:2459–2464Google Scholar
  54. McDowell B, Fletcher JE (1962) Avalanche! Natl Geogr Mag 121:855–880Google Scholar
  55. Merifield PM (2001) Observations on the December 1999 catastrophic debris flows and floods in Venezuela. In: Luke B, Jacobson E, Werle J (eds) Proceedings, 36th annual engineering geology and geotechnical engineering symposium, Las Vegas, Nevada, 28–30 March 2001, pp 271–280Google Scholar
  56. Mikkelsen PE (1996) Field instrumentation. In: Turner AK, Schuster RL (eds) Landslides—investigation and mitigation. Washington, D.C., National Academy of Sciences, Transportation research board special report 247, pp 278–316Google Scholar
  57. Mileti DS, Bolton PA, Fernandez G, Updike RG (1991) The eruption of Nevado del Ruiz volcano, Colombia, South America, November 13, 1985. Committee on Natural Disasters, National Research Council, National Academy Press, Washington, DC. Natural Disaster Studies 4, 109 ppGoogle Scholar
  58. Miller RV, Tan SS (1979) Bluebird Canyon landslide of October 2, 1978, Laguna Beach, California. Calif Geol 32(1):5–7Google Scholar
  59. Mojica J, Colmenares F, Villarroel C, Macia C, Moreno M (1986) Caracteristics de flujo de lodo ocurrido el Noviembre en el valle de Armero (Tolima, Colombia); historia y comentarios de los flujos de 1595 y 1845. Geologia Colombia 14:107–140Google Scholar
  60. Morales B (1966) The Huascaran avalanche in the Santa Valley, Peru. In: Proceedings of international symposium on scientific aspects of snow and ice avalanches, Davos, Switzerland, 2 May 1997. International Association of Scientific Hydrology Publication 69, pp 304–315Google Scholar
  61. Nieto AS, Barany I (1988) Interim report on catastrophic rain-induced landslides in Río de Janeiro and Petropolis, Brazil, February 1988. Report to Committee on Natural Disasters, National Research Council, Department of Geology, University of Illinois, Urbana, April, 50 ppGoogle Scholar
  62. Ogura AT, Filho OA (1991) The Morin debris-flow disaster at Petropolis City, Río de Janeiro State, Brazil. Landslide news, international newsletter of the Japan Landslide Society no. 5:22–24Google Scholar
  63. Olshansky RB (1990) Landslide hazard in the United States—case studies in planning and policy development. Garland Publishing, Inc., New York, p 176Google Scholar
  64. Olshansky RB (1996) Planning for hillside development, American Planning Association Planning Advisory Service Report no. 466, 50 ppGoogle Scholar
  65. Olshansky RB (1998) Regulation of hillside development in the United States. Environ Manage 22(3):383–392CrossRefGoogle Scholar
  66. Olshansky RB, Rogers JD (1987) Unstable ground: landslide policy in the United States. Ecol Law Q 13(4):939–1006Google Scholar
  67. O’Riordan T (1974) The New Zealand natural hazard insurance scheme: application to North America. In: White GF (ed) Natural hazards—local, national, global. Oxford University Press, New York, pp 217–219Google Scholar
  68. O’Tousa J (1995) La Conchita landslide. Ventura County, California. AEG News, Association of Engineering Geologists, 38(4):22–24Google Scholar
  69. Plafker G, Ericksen GE (1978) Nevados Huascaran avalanches, chap 8. In: Voight B (ed) Rockslides and avalanches, 1, natural phenomena. Elsevier, New York, pp 277–314Google Scholar
  70. Plafker G, Ericksen GE, Fernandez Concha J (1971) Geological aspects of the May 31, 1970, Peru earthquake. Seismol Soc Am Bull 61(3):543–578Google Scholar
  71. Rymer MJ, White RA (1989) Hazards in El Salvador from earthquake-induced landslides. In: Brabb EE, Harrod, BL (eds) Landslides: extent and economic significance, Proceedings of 28th international geological congress, Washington, DC, 17 July 1989, pp 105–109Google Scholar
  72. Salcedo D (2000) Los flujos torrenciales catastroficos de Diciembre de 1999, en el Estado Vargas y en el area metropolitana de Caracas. Caracteristicas y lecciones aprendidas. In: Proceedings of Memorias XVI Seminario Venezolana de Geotecnia, Caracas, pp 128–175Google Scholar
  73. Salcedo D (2001) Characteristicas y aspectos socio-económicos y ambientales de los flujos torrenciales catastróficos de Diciemebre de 1999, en el Estado Vargas y en el área metropolitana de Caracas. In: Proceedings of 3rd Panamerican symposium on landslides, Cartagena, Colombia, 29 July–3 August 2001, 1:291–317Google Scholar
  74. Schuster RL (1991) Landslide hazard management—experience in the United States. In: Slope stability engineering—developments and applications, Proceedings, international conference on slope stability, Institution of Civil Engineers, Isle of Wight, UK, 15–18 April 1991, pp 253–263Google Scholar
  75. Schuster RL (1995) Recent advances in slope stabilization. In: Bell DH (ed) Landslides, Proceedings, 6th international symposium on landslides, Christchurch, 10–14 February 1992, 3:1715–1745Google Scholar
  76. Schuster RL (1996) Socioeconomic significance of landslides. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, National Academy of Sciences, Washington, DC, Transportation Research Board Special Report 247, pp 12–35Google Scholar
  77. Schuster RL (2000) The 1979 East Abbotsford landslide, Dunedin, New Zealand (abstr.). Program with abstracts, 2000 annual meeting, association of engineering geologists, San Jose, California, 19–26 September 2000, AEG News 43(4):111Google Scholar
  78. Schuster RL, Kockelman WJ (1996) Principles of landslide hazard reduction. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, National Academy of Sciences, Washington, DC. Transportation research board special report 247, pp 91–105Google Scholar
  79. Schuster RL, Leighton FB (1988) Regulations in California, USA. In: Kozlovskii EA (ed) Landslides and mudflows, UNESCO/UNEP, Moscow, 2:116–122Google Scholar
  80. Schuster RL, Salcedo DA, Valenzuela L (2002) Overview of catastrophic landslides of South America in the twentieth century. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, Geological Society of America. Rev Eng Geol 15:1–34Google Scholar
  81. Schwab JC, Gori, PL, Jeer S (eds) (2005) Landslide hazards and planning. American Planning Association Planning Advisory Service Report no. 533/534:208Google Scholar
  82. Science Daily (2005) Some L.A. homes will have size limit. 28 July web page: < = TopNews&article = UPI-1–20050728–17293600-bc-us-mcmansions.xml>
  83. Scullin CM (1983) Excavation and grading code administration, inspection, and enforcement. Prentice-Hall, Inc., Englewood Cliffs, p 405Google Scholar
  84. Slosson JE (1969) The role of engineering geology in urban planning. In: The Governor’s conference on environmental geology. Colorado geological survey special publication no. 1, Denver, pp 8–15Google Scholar
  85. Slosson JE, Krohn JP (1979) AEG building code review—mudflow/debris flow damage; February 1979 storm-Los Angeles area. Calif Geol 32(1):8–11Google Scholar
  86. Slosson JE, Krohn JP (1982) Southern California landslides of 1979 and 1980. In: Storms, floods, and debris flows in Southern California and Arizona, 1978 and 1980, Proceedings of symposium, national research council and environmental quality laboratory, California Institute of Technology, Pasadena, 17–18 Sepember 1980. National Academy Press, Washington, DC, pp 291–319Google Scholar
  87. Smith TC (1982) Lawsuits and claims against cities and counties mount after January 1982 storm. Calif Geol 35(7):163–164Google Scholar
  88. Soeters R, van Westen, CJ (1996) Slope instability recognition, analysis, and zonation. In Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Research Council, Washington, DC, Transportation Research Board Special Report 247:129–177Google Scholar
  89. Swanston DN, Schuster RL (1989) Long-term landslide hazard mitigation programs: structure and experience from other countries. Bull Assoc Eng Geol 26(1):109–133Google Scholar
  90. Tan SS (1980) Slope failures in Orange County due to 1978 rains. Calif Geol 33(9):202–205Google Scholar
  91. United Nations (2004) UN report says world urban population of 3 billion today expected to reach 5 billion by 2030. UN press release, Department of Economic and Social Affairs. < pop899_English.doc>
  92. U.S. Geological Survey (1982) Goals and tasks of the landslide part of a ground-failure hazards reduction program. US Geological Survey Circular 880, 49 ppGoogle Scholar
  93. U.S. Geological Survey (2005) NOAA-USGS debris-flow warning system—final report. US Geological Survey Circular 1283, 47 ppGoogle Scholar
  94. Vail AJ (1984) Two landslides in Hong Kong. In: Proceedings of 4th international symposium on landslides, Toronto, 16–21 September 1984, 1:717–722Google Scholar
  95. Voight B (1990) The 1985 Nevado del Ruiz volcano catastrophe—anatomy and retrospection. J Volcanol Geotherm Res 44:349–386CrossRefGoogle Scholar
  96. Wieczorek GF, Larsen MC, Eaton LS, Garcia-Martinez R, Jiminez-Diaz V, Perez-Hernandez D, Rodriques JA, Urbani F (2000) Catastrophic landslides and flooding in coastal Venezuela, 16 December 1999 (abstr.). Program with abstracts, 2000 annual meeting, association of engineering geologists, San Jose, 19–26 September 2000, AEG News 43(4):120Google Scholar
  97. Wieczorek GF, Wilson RC, Mark RK, Keefer DK, Harp EL, Ellen SD, Brown WM III, Rice P (1999) Landslide warning system in the San Francisco Bay region, California. In: Sassa K (ed) Landslides of the world. Kyoto University Press, Kyoto, pp 108–113Google Scholar
  98. Wilson RC (2005) The rise and fall of a debris-flow warning system for the San Francisco Bay Region, California. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 493–516Google Scholar
  99. Wold RL Jr, Jochim CL (1989) Landslide loss reduction: a guide for state and local government planning. Earthquake Hazards Reduction Series 52, Federal Emergency Management Agency, Washington, p 50Google Scholar
  100. Wyllie CD, Norrish NI (1996) Stabilization of rock slopes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academy of Sciences, Washington, DC, Transportation Research Board Special Report 247, pp 474–504Google Scholar
  101. Youd TL (1978) Major cause of earthquake damage is ground failure. Civil Eng 48(4):47–51Google Scholar
  102. Youd TL, Hoose SN (1978) Historic ground failures in northern California triggered by earthquakes. US Geological Survey Professional Paper 993, 177 ppGoogle Scholar
  103. Záruba Q, Mencl V (1982) Landslides and their control. Elsevier, New York, p 324Google Scholar
  104. Zuloaga I (1995) Venezuela—estimation of the economic losses due to geological hazards. Primeras Jornadas Venezolanas de Ingenieria Civil, Caracas, pp 1–6Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.US Geological SurveyDenverUSA

Personalised recommendations