Skip to main content

Advertisement

Log in

Microwave- and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Batch adsorption tests for removal of methylene blue dye (MBD) from aqueous solutions onto bentonite was investigated using natural chemically treated (sulphuric acid) and physically treated (microwaved) bentonite. In batch sorption tests for MBD removal by the developed sorbents, the time needed to reach equilibrium was less than 30 min. The uptake of MBD by the microwave-treated bentonite was the highest, followed by the acid-treated and finally the untreated bentonite. The uptake of MBD increased with an increase in the dye concentration or the solution temperature. Three kinetic models were used for elucidation of the probable mechanisms of MBD uptake by the three sorbents. The rates of MBD uptake followed the pseudo second-order model with a high correlation. Intraparticle diffusion was involved in the sorption process but was not the rate-controlling factor. The Freundlich and Langmuir isotherm models were employed and well represented the experimental data.

Résumé

Des tests d’adsorption en série, destinés à enlever des colorations au bleu de méthylène (MBD) de solutions aqueuses, à l’aide de bentonite, ont été réalisés. La bentonite utilisée était naturelle, traitée chimiquement à l’acide sulfurique ou traitée physiquement par micro-ondes. Dans les tests d’adsorption pour enlèvement de MBD par les agents de sorption mis en oeuvre, le temps nécessaire pour atteindre l’équilibre est inférieur à 30 mn. Le prélèvement de MBD par la bentonite traitée par micro-ondes a été le plus important, suivi par la bentonite traitée à l’acide et finalement la bentonite naturelle. Le prélèvement de MBD augmente avec la concentration du colorant ainsi qu’avec la température de la solution. Trois modèles cinétiques ont été considérés pour comprendre les processus vraisemblables de prélèvement de MBD par les trois agents de sorption. Les taux de prélèvement de MBD suivent un modèle de second ordre, de très près. La diffusion intra-particulaire est concernée par le processus de sorption, mais n’est pas le facteur contrôlant le taux de prélèvement. Les modèles des isothermes de Freundlich et de Langmuir rendent bien compte des données expérimentales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achife E, Ibemesi JA (1989) Applicability of the Freundlich and Langmuir adsorption-isotherms in the bleaching of rubber and melon seed oils. J Am Oil Chem Soc 66:247–252

    Article  Google Scholar 

  • Al-Asheh S, Banat F, Abu-Aitah L (2003) The removal of methylene blue dye from aqueous solutions using activated and non-activated bentonite. Adsorption Sci Technol 21:451–462

    Article  Google Scholar 

  • Annadurai G, Juang R, Lee D (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater B92:263–274

    Article  Google Scholar 

  • Asfour HM, Fadali OA, Nassar MN, El-Geundi MS (1985) Equilibrium studies on adsorption of basic dyes on hardwood. J Chem Technol Biotechnol 35A:21–27

    Google Scholar 

  • Aydin AH, Bulut Y, Yavuz O (2004) Acid dyes removal using low cost adsorbents. Int J Environ Pollut 21:97–104

    Google Scholar 

  • Banat F, Al-Asheh S, Al-Makhadmeh (2003) Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem 39:193–202

    Article  Google Scholar 

  • Banerjee K, Cheremisinoff PN, Cheng SL (1997) Adsorption kinetics of xylene by flyash. Water Res 31:249–261

    Article  Google Scholar 

  • Boyd S, Shaobia S, Lee J, Mortland M (1988) Pentachlorophenol sorption by organo clay. Clay Clay Miner 35:125–130

    Article  Google Scholar 

  • Brown MA, DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    Article  Google Scholar 

  • Gayle N (1994) Activated carbon and soluble humic substances: adsorption, desorption and surface charge effects. J Colloid Interface Sci 164:452–462

    Article  Google Scholar 

  • Hu QH, Qiao SZ, Haghseresht F, Wilson MA, Lu GQ (2005) Adsorption study for removal of basic dye using bentonite. Ind Eng Chem Res 102:885–889

    Google Scholar 

  • McKay G (1980) Color removal by adsorption, American Dye-Stuff Reports, March 38

  • McKay G, Al-Duri B (1990) Comparison of theory and application of several mathematics models to predict kinetics of single component batch adsorption systems. Trans IChemE 68B:255–264

    Google Scholar 

  • McKay G, Poots V (1986) Kinetics and diffusion processes in color removal from effluent using wood. J Chem Technol Biotechnol 30:279–282

    Article  Google Scholar 

  • McKay G, Otterburn MS, Sweeney AG (1980) The removal of colour from effluent using various adsorbents—IV silica equilibria and column studies. Water Res 14:21–27

    Article  Google Scholar 

  • McKay G, Blair HS, Gardner JR (1982) Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci 27:3043–3057

    Article  Google Scholar 

  • Mishra G, Tripathy M (1993) A critical review of the treatments for decolourization of textile effluent. Colourage 40:35–38

    Google Scholar 

  • Nakhla Abuzaid N, Garooq S (1994) Activated carbon adsorption of phenolics in oxic systems: effect of pH and temperature variations. Water Environ Res 66:842–850

    Google Scholar 

  • Nassar MN, Geundi MS (1990) Comparative cost of colour removal from textile effluents using natural adsorbents. J Chem Biotechnol 50:257–263

    Article  Google Scholar 

  • Papic S, Koprivanac N, Loncaric Bozic A (2000) Removal of reactive dyes from wastewater using Fe(III) coagulant. Coloration Technol 116:352–358

    Article  Google Scholar 

  • Saniz-Diaz C, Griffiths A (2000) Activated carbon from solid wastes using a pilot-scale batch flaming pyrolyser. Fuel 79:1863–1871

    Article  Google Scholar 

  • Sirianuntapiboon S, Saengow W (2004) Removal of vat dyes from textile wastewater using biosludge. Water Qual Res J Can 39:278–284

    Google Scholar 

  • Talarposhti M, Donnelly T, Anderson GK (2001) Colour removal from a simulated dyes wastewater using a two-phase anaerobic packed bed reactor. Water Res 35:425–432

    Article  Google Scholar 

  • Viraraghavan T, Ramakrishna KR (1999) Fly ash for colour removal from synthetic dye solution. Water Qual Res J Canada 34:505–517

    Google Scholar 

  • Yeh R, Thomas A (1995) Color difference measurement and color removal from dye wastewater using different adsorbents. J Chem Technol Biotechnol 63:55–71

    Article  Google Scholar 

  • Yeh RL, Liu R, Chiu HM, Hung YT (1993) Comparative study of adsorption capacity of various adsorbents for treating dye wastewater. Int J Environ Stud Sect B: Environ Sci Technol 44:259–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Al-Asheh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banat, F., Al-Asheh, S., Al-Anbar, S. et al. Microwave- and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater. Bull Eng Geol Environ 66, 53–58 (2007). https://doi.org/10.1007/s10064-006-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-006-0054-1

Keywords

Mots clés

Navigation