Skip to main content
Log in

The kinetic response of rock to water vapour

  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper outlines the need for a description to quantify the natural response of rock to the presence of water. It discusses the change in mass that occurs in a sample exposed to water vapour over time could provide such a description, and the reason for preferring this method over that of immersing samples in water. The systematic testing required to assess the influence of experimental variables upon the mass-vs-time signature is illustrated. Three quantities are obtained from the test: the change in mass under a given relative humidity, the time required for that change to occur and the rate of change of mass with time. This kinetic response of samples to water vapour also provides a simple way of assessing the specific surface of samples. Examples of the calculations required to obtain these quantities are provided so that the kinetic response of samples to water vapour may be added to other petrophysical descriptions.

Resumé

L’article souligne la nécessité, pour bien décrire une roche, de quantifier son évolution naturelle en présence d’eau. Il examine le changement de masse dans le temps d’un échantillon soumis à une variation de la teneur en vapeur d’eau de l’atmosphère ambiante. On présente l’expérimentation proposée pour évaluer l’influence des variables expérimentales sur la signature «masse en fonction du temps» de l’échantillon. L’essai fournit trois données : la variation de masse pour une variation d’humidité relative donnée ; le temps nécessaire pour obtenir cette variation ; le taux de variation en fonction du temps. La cinétique de la variation fournit aussi une façon simple d’évaluer la surface spécifique des échantillons. Des exemples des calculs proposés pour accéder à ces valeurs sont fournis. Il est donc possible d’ajouter ce paramètre aux autres caractérisations pétrophysiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • ASTM (American Society for Testing and Materials D 5298-92) (1991) Standard test method for measurement of soil potential (suction) using filter paper. West Conshohocken, PA, 1312–1317

  • Baroghel-Bounty V, Chaussadent T (1996) Texture and moisture characterisation of hardened cement pastes and concretes from water vapour sorption measurements. In: Jennings H et al.(eds) The modelling of microstructure and its potential for studying transport properties and durability. Kluwer, Dordrecht, pp 241–255

  • Bell FG, (1992) The durability of sandstone as building stone, especially in urban environments. Bull Assoc Eng Geol 29:49–60

    Google Scholar 

  • Bell FG, Dearman WR (1988) Assessment of the durability of sandstones with illustrations from some buildings in the north of England. In: Marinos PG, Koukis GC (eds) The engineering geology of ancient works, monuments and historical sites. Balkema, Rotterdam, pp 707–716

  • BRE (Building Research Establishment, Digest 269) (1983) The selection of natural building stone. Building Research Establishment, Garston, Watford, UK

  • Bristow CR, Lott GK (1994) The stratigraphy and building stone potential of the Portland Beds in the western part of the Vale of Wardour. In: A geological assessment for the Commissioners of Salisbury Cathedral. British Geological Survey

  • Bristow CR, Lott GK (1995) The stratigraphy and building stone potential of the Portland Beds between Tisbury and Chilmark in the Vale of Wardour. In: A geological assessment for the Commissioners of Salisbury Cathedral. British Geological Survey

  • BS (British Standard Institution) (1990) Classification tests. Methods of testing for soils for civil engineering purposes. BS 1377-2

  • BS (British Standard Institution) (1998) Determination of real and bulk density and of total and open porosity for natural stone masonry units. Methods of test for masonry units, part 4. BS 772-4

  • Butenuth C (2001) Strength and weathering of rock as boundary layer problems. Imperial College Press

  • Butenuth C, de Freitas MH (1991) Reindichte von Gesteine, Zeitaufwand und Genauigkeit ihrer pyknometrischen Bestimmung mit n-Heptan als Meßflüssigkeit. Geophys. Veröff. University, Leipzig, Bd. IV, Heft 3:121–126

  • Colback PSB, Wiid BL (1965) The influence of moisture content on the compressive strength of rocks. Proceedings of 3rd Canadian Symposium of Rock Mechanics, pp 65–83

  • Cooke RU, Gibbs G (1991) Crumbling heritage? Studies of stone weathering in polluted atmospheres. A report of research on atmospheric pollution and stone decay for the Joint Working Party between the Cathedrals Fabric Commission for England and the Joint Environmental Programme of National Power plc and PowerGen plc

  • Hamm TH (2002) The response of a porous stone to water vapour. PhD Thesis, London University. Department of Civil Engineering, Imperial College, London

  • Hudec PP (1997) Changes in engineering properties of weak and weathered rock with time. In: Characterization of weak and weathered rock masses. Special publication 9 for the Association of Engineering Geologists’ Annual Meeting, Portland, Oregon, 30 September–4 October 1997, pp 53–70

  • Martini I (1978) Tafoni weathering with examples from Tuscany, Italy. Zeitschrift Geomorph 22:44–67

    Google Scholar 

  • McGee ES (1998) Colorado yule marble building stone of the Lincoln Memorial. US Geol Surv Bull 2162

  • Passas N, Butanova V, Butenuth C, de Freitas MH (1996) Porosity of rock as determined by particle and bulk density, measurements in different measuring fluids. Geotech Test J 19:310–315

    Google Scholar 

  • Peschel A (1983) Eigenschaften der Natursteine und ihre Prüfung. Natursteine, 2. Aufl., Reihe ‘Nutzbare Gesteine und Industrieminerale’ VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

  • Skempton AW (1953) Colloidal activity of clay. Proceedings 3rd Conference Soil Mechanics and Foundation Engineering, vol 1, Zurich, pp 57–61

  • United States Bureau of Standards (1914) Report of tests of marbles for the Lincoln Memorial Commission. 23 January 1914. Records of the Office of the Public Buildings and Grounds, Record Group 42, National Archives

Download references

Acknowledgement

We wish to acknowledge the advice and support we have received from Prof. G. Butenuth and from K. and I. Hamm, without whom this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. de Freitas.

Additional information

T. Hamm, is a former research student of the Department of Civil and Environmental Engineering, Imperial College of Science Technology and Medicine, London SW7 2BU, UK

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butenuth, C., Hamm, T. & de Freitas, M.H. The kinetic response of rock to water vapour. Bull Eng Geol Environ 63, 179–189 (2004). https://doi.org/10.1007/s10064-004-0241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-004-0241-x

Keywords

Mots clés

Navigation