Core values: the first Hans-Cloos lecture

Abstract

The traditional scope of engineering geology was the application of geology in construction practice, but this has become widened in time to embrace other fields of engineering, environmental concerns and geological hazards. The subject lies at the interface between the observation and description of natural processes associated with the science of geology and the knowledge of numeracy and material properties required for design and manufacturing central to the engineering process. A consequence is that engineering geology has come to be seen as secondary to soil and rock mechanics within geotechnical engineering, even though the subject is required to be applied throughout the construction sequence and cost over-run, delay and failure during construction are commonly ascribed to geological errors. The role of engineering geology as a discipline needs to be defined and the central role of geology has to be re-emphasised by improving the understanding of geological uncertainty in contributing to geotechnical risk, developing improved protocols in the formulation of meaningful geological and ground models, and more systematic methods of presentation of ground-related reporting. National and international organisations in engineering geology have an important challenge in providing the leadership through which an enhanced function and status for the subject can be attained.

Résumé

Le champ traditionnel de la géologie de l'ingénieur a été l'application de la géologie à l'art de construire, mais ce champ s'est élargi avec le temps, couvrant d'autres domaines relatifs aux travaux de l'ingénieur, à l'environnement et aux risques naturels. La discipline se situe à l'interface entre l'observation et la description de processus naturels relevant des sciences de la Terre et l'étude des propriétés des matériaux et la maîtrise de la modélisation nécessaires au dimensionnement et la mise en œuvre d'ouvrages relevant de l'art de l'ingénieur. Une conséquence de cette situation est que la géologie de l'ingénieur a été perçue comme secondaire par rapport à la mécanique des sols et la mécanique des roches au sein de la géotechnique, bien que la contribution de cette discipline soit nécessaire tout au long du processus de construction, les dépassements de coûts, les retards et accidents pendant la construction étant communément attribués à des difficultés géologiques. Le rôle de la géologie de l'ingénieur comme discipline doit être défini et le rôle central de la géologie doit être à nouveau souligné en améliorant notre compréhension des incertitudes d'origine géologique dans la constitution du risque géotechnique, en développant des procédures performantes pour la définition de modèles géologiques réalistes et en établissant des méthodes systématiques pour la présentation des rapports géologiques. Les associations nationales et internationales de géologie de l'ingénieur ont un important défi à relever en indiquant la direction à suivre pour que le rôle et le statut de la discipline soient mieux reconnus.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Anonymous (1999) A single learned society body for geotechnical engineering in the UK. Appendix A. Definition of geotechnical engineering. Ground Eng 32(11):39

    Google Scholar 

  2. Arnould M (1970) The International Association of Engineering Geology. History—Activity. Bull IAEG 1:22–28

    Google Scholar 

  3. Association of Engineering Geologists (2002) 2002 Annual report and directory. AEG, Kent, Ohio, 132 pp

  4. Attewell PB, Farmer IW (1976) Principles of engineering geology. Chapman and Hall, London, 1045 pp

  5. Balk R (1948) Structural behaviour of igneous rocks (with special reference to interpretations by H. Cloos and collaborators). Geological Society of America Memoir 5, 177 pp

  6. Balk R (1953) Memorial to Hans Cloos (1886–1951). In: Proc Geological Society of America, Annual Report for 1952, pp 87–94

  7. Barton NR, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6:183–236

    Google Scholar 

  8. Baynes FJ (1996) Where is geotechnical practice heading? An engineering geologist's perspective. In: Jaksa, Kaggwa, Cameron (eds) Proc 7th Australian/New Zealand Conf on Geomechanics, pp 583–584

  9. Bell FG (2000) Engineering properties of soils and rocks, 2nd edn. Blackwell Science, Oxford, 482 pp

  10. Bieniawski ZT (1989) Rock mass classifications. Wiley, New York, 251 pp

  11. Bjerrum L, Casagrande A, Peck RB, Skempton AW (1960) From theory to practice in soil mechanics. Wiley, New York, 424 pp

  12. Brierley GS (1998) Subsurface investigations and geotechnical report preparation. In: Hatem DJ (ed) Subsurface conditions. Risk management for design and construction management professionals. Wiley, New York, 465 pp

  13. British Standards Institution (1999) Code of Practice for site investigations. BS 5930:1999. British Standards Institution, London, 192 pp

    Google Scholar 

  14. Brown ET, Hoek E (1978) Trends in relationships between measured in situ stresses and depth. Int J Rock Mech Min Sci 17:18–48

    Google Scholar 

  15. Brunsden D (2002) Geomorphological roulette for engineers and planners: some insights into an old game. Q J Eng Geol Hydrogeol35:101–142

    Google Scholar 

  16. Clayton CRI (2001) Managing geotechnical risk. Thomas Telford, London, 80 pp

  17. Clayton CRI, Matthews MC, Simons NE (1995) Site investigations. Blackwell Science, Oxford, 584 pp

  18. Cloos H (1954) Conversation with the Earth. Routledge and Kegan Paul, London, 409 pp

  19. Construction Industry Research and Information Association (1978) Tunnelling—improved contract practices. CIRIA, London, 69 pp

  20. Dearman WR, Baynes FJ, Irfan TY (1978) Engineering grading of weathered granite. Eng Geol 12:345–374

    Google Scholar 

  21. Essex RJ (1997) Geotechnical baseline reports for underground construction. Guidelines and practices. American Society of Civil Engineers, Baltimore, 40 pp

  22. Fookes PG (1997a) Geology for engineers: the geological model, prediction and performance. Q J Eng Geol 30:293–424

    Google Scholar 

  23. Fookes PG (ed) (1997b) Tropical residual soils. Geological Society of London, London, 184 pp

  24. Fookes PG, Hawkins AB (1988) Limestone weathering: its engineering significance and a proposed classification. Q J Eng Geol 21:7–31

    Google Scholar 

  25. Fookes PG, Gordon DL, Higginbottom IE (1975) Glacial landforms, their deposits and engineering characteristics. In: Proc Symp The Engineering Behaviour of Glacial Materials, Midlands Society of Soil Mechanics and Foundation Engineering, pp 18–51

  26. Fookes PG, Baynes FJ, Hutchinson JH (2000) Total geological history: a model approach to the anticipation, observation and understanding of site conditions. In: Proc Int Conf on Geotechnical and Geological Engineering, Technomic, vol 1, pp 370–460

  27. Geological Society of London Engineering Group (1970) The logging of rock cores for engineering purposes. Q J Eng Geol 3:1–24

    Google Scholar 

  28. Geotechnical Control Office (1987) Guide to site investigation. Geoguide 2. Civil Engineering Services Department, Hong Kong, 365 pp

  29. Geotechnical Control Office (1988) Guide to rock and soil descriptions. Geoguide 3. Civil Engineering Services Department, Hong Kong, 191 pp

  30. Goodman RE (1999) Karl Terzaghi. The engineer as an artist. American Society of Civil Engineers, Baltimore, 340 pp

  31. Gould N, Capper P, Dixon G, Cohen M (1999) Dispute resolution in the construction industry. Thomas Telford, London, 222 pp

  32. Hoek E, Palmieri A (1998) Geotechnical risks on large civil engineering projects. Proc 8th Congr IAEG 1:79–88

    Google Scholar 

  33. Kiersch GA (1955) Engineering geology. Q Colo Sch Mines 30:122 pp

    Google Scholar 

  34. Kiersch GA (ed) (1991) The heritage of engineering geology; the first hundred years. Geol Soc Am Cent Spec Vol 3, 605 pp

  35. Knill JL (1970) Environmental geology. Proc Geol Assoc 81:529–537

    Google Scholar 

  36. Knill JL (1972) Engineering geology in reservoir construction in south west England. Proc Ussher Soc 2:359–371

    Google Scholar 

  37. Knill JL (1976) Cow Green revisited. Inaugural lectures. Imperial College, London, pp 61–71

  38. Knill JL (1978) In: Bell FG (ed) Geology and foundations. Newnes-Butterworths, Oxford, 598 pp

  39. Knill JL (1987) The engineering geologist as an expert witness. Planning and engineering geology. Geol Soc Lond Eng Group Spec Publ 4:629–632

    Google Scholar 

  40. Knill JL (1990) Storage and disposal. Proc Int Conf Br Nuclear Energy Soc 2:97–104

    Google Scholar 

  41. Knill JL (1991) Sufficiency of proof, authority and environmental culture. Moore Lecture, University of Sheffield

  42. Knill JL (1994) Engineering geological mapping and site investigation. Prediction in engineering geology. Proc 6th Congr IAEG 5:3227–3234

    Google Scholar 

  43. Knill J (2001a) Environmental change and engineering geology: our global challenge. Engineering geology and the environment. AA Balkema, Rotterdam 4:3355–3361

    Google Scholar 

  44. Knill JL (2001b) Geological uncertainty and geotechnical risk determination. Proc 14th Southeast Asian Geotech Conf 1:129–134

    Google Scholar 

  45. Knill JL (2001c) Geotechnical engineering in a changing world. Proc 14th Southeast Asian Geotech Conf 1:3–14

    Google Scholar 

  46. Knill JL, Jones KS (1965) The recording and interpretation of geological conditions in the foundations of the Roseires, Kariba and Latiyan dams. Géotechnique 15:94–124

    Google Scholar 

  47. Krynine DP, Judd WR (1957) Principles of engineering geology and geotechnics. McGraw-Hill, New York, 730 pp

  48. Lapworth H (1911) The geology of dam trenches. Trans Assoc Water Eng 16

  49. Legget RF (1962) Geology and engineering, 2nd edn. McGraw-Hill, New York, 883 pp

  50. Legget RF, Karrow PF (1982) Handbook of geology in civil engineering. McGraw-Hill, New York

  51. Lugeon M (1933) Barrages et géologie. F Rouge et Cie, Dunod, Paris

  52. Martin RP (2000) Geological input to slope engineering in Hong Kong. In: Proc Conf Engineering Geology HK 2000, Institution of Mining and Metallurgy, 218 pp

  53. Matyas RM, Mathews AL, Smith Sperry PE (1995) Construction dispute review board manual. McGraw-Hill, New York, 173 pp

  54. Milanovic PT (2000) Geological engineering in karst. Zebra, Belgrade, 347 pp

  55. Morgenstern NR (2000) Common Ground. In: Proc Int Conf on Geotechnical and Geological Engineering, Technomic, vol 1, pp 1–30

  56. Morgenstern NR, Cruden DM (1977) Description and classification of geotechnical complexities. In: Proc Int Symp on the Geotechnics of Structurally Complex Formations, vol 2, pp 195–203

  57. Morgenstern NR, Eigenbrod KD (1974) Classification of argillaceous soils and rocks. Proc Am Soc Civ Eng J Geotech Div 100:1137–1156

    Google Scholar 

  58. Morrell D (1987) Indictment. Power and politics in the construction industry. Faber and Faber, London, 287 pp

  59. Müller L (1974) Engineering geology today. Bull IAEG 9:75–78

    Google Scholar 

  60. Müller-Salzburg L (1976) Geology and engineering geology. Reflections on the occasion of the 25th anniversary of the death of Hans Cloos. Bull IAEG 13:35–36

    Google Scholar 

  61. Nicholson D, Tse C-M, Penny C (1999) The observational method in ground engineering: principles and applications. Construction Industry Research and Information Association, London, 214 pp

    Google Scholar 

  62. Paige S (ed) (1950) Application of geology to engineering practice. Berkey Volume. Geological Society of America, Washington, DC, 327 pp

  63. Peck RB (1969) Advantages and limitations of the observational method in applied soil mechanics. Géotechnique 19:171–187

    Google Scholar 

  64. Price DG, Knill JL (1974) Scale in the planning of site investigations. Proc 2nd Int Congr IAEG 1(1–5):1–8

  65. Rziha F (1874) Lehrbuch ger gesammten tunnelbaukenst, 2nd edn. Verlag von Ernst und Korn

  66. Skempton AW, Chrimes MM (1994) Thames Tunnel: geology, site investigation and geotechnical problems. Géotechnique 44:191–216

    Google Scholar 

  67. Taylor RK (1988) Coal Measures mudrocks: composition, classification and weathering processes. Q J Eng Geol 21:85–99

    Google Scholar 

  68. Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer. Grundlage, Translated by A Casagrande (1960). In: From theory to practice in soil mechanics. Wiley, New York, pp 146–148

  69. Winchester S (2001) The map that changed the world. Penguin Books, Harmondsworth, 338 pp

  70. Wolters R (1976) Hans Cloos 1885–51. Graphic representations of geological structures and their regional relationships. Bull IAEG 13:3–33

    Google Scholar 

Download references

Authors

Additional information

It is with great regret that we record John Knill's death on 31 December 2002.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knill, J. Core values: the first Hans-Cloos lecture. Bull Eng Geol Environ 62, 1–34 (2003). https://doi.org/10.1007/s10064-002-0187-9

Download citation

Keywords

  • Hans Cloos
  • Core values
  • Engineering geology

Mots clés

  • Hans Cloos
  • Valeurs fondamentales
  • Géologie de l'ingénieur