Advertisement

Core values: the first Hans-Cloos lecture

  • John Knill
Article

Abstract

The traditional scope of engineering geology was the application of geology in construction practice, but this has become widened in time to embrace other fields of engineering, environmental concerns and geological hazards. The subject lies at the interface between the observation and description of natural processes associated with the science of geology and the knowledge of numeracy and material properties required for design and manufacturing central to the engineering process. A consequence is that engineering geology has come to be seen as secondary to soil and rock mechanics within geotechnical engineering, even though the subject is required to be applied throughout the construction sequence and cost over-run, delay and failure during construction are commonly ascribed to geological errors. The role of engineering geology as a discipline needs to be defined and the central role of geology has to be re-emphasised by improving the understanding of geological uncertainty in contributing to geotechnical risk, developing improved protocols in the formulation of meaningful geological and ground models, and more systematic methods of presentation of ground-related reporting. National and international organisations in engineering geology have an important challenge in providing the leadership through which an enhanced function and status for the subject can be attained.

Keywords

Hans Cloos Core values Engineering geology 

Résumé

Le champ traditionnel de la géologie de l'ingénieur a été l'application de la géologie à l'art de construire, mais ce champ s'est élargi avec le temps, couvrant d'autres domaines relatifs aux travaux de l'ingénieur, à l'environnement et aux risques naturels. La discipline se situe à l'interface entre l'observation et la description de processus naturels relevant des sciences de la Terre et l'étude des propriétés des matériaux et la maîtrise de la modélisation nécessaires au dimensionnement et la mise en œuvre d'ouvrages relevant de l'art de l'ingénieur. Une conséquence de cette situation est que la géologie de l'ingénieur a été perçue comme secondaire par rapport à la mécanique des sols et la mécanique des roches au sein de la géotechnique, bien que la contribution de cette discipline soit nécessaire tout au long du processus de construction, les dépassements de coûts, les retards et accidents pendant la construction étant communément attribués à des difficultés géologiques. Le rôle de la géologie de l'ingénieur comme discipline doit être défini et le rôle central de la géologie doit être à nouveau souligné en améliorant notre compréhension des incertitudes d'origine géologique dans la constitution du risque géotechnique, en développant des procédures performantes pour la définition de modèles géologiques réalistes et en établissant des méthodes systématiques pour la présentation des rapports géologiques. Les associations nationales et internationales de géologie de l'ingénieur ont un important défi à relever en indiquant la direction à suivre pour que le rôle et le statut de la discipline soient mieux reconnus.

Mots clés

Hans Cloos Valeurs fondamentales Géologie de l'ingénieur 

References

  1. Anonymous (1999) A single learned society body for geotechnical engineering in the UK. Appendix A. Definition of geotechnical engineering. Ground Eng 32(11):39Google Scholar
  2. Arnould M (1970) The International Association of Engineering Geology. History—Activity. Bull IAEG 1:22–28Google Scholar
  3. Association of Engineering Geologists (2002) 2002 Annual report and directory. AEG, Kent, Ohio, 132 ppGoogle Scholar
  4. Attewell PB, Farmer IW (1976) Principles of engineering geology. Chapman and Hall, London, 1045 ppGoogle Scholar
  5. Balk R (1948) Structural behaviour of igneous rocks (with special reference to interpretations by H. Cloos and collaborators). Geological Society of America Memoir 5, 177 ppGoogle Scholar
  6. Balk R (1953) Memorial to Hans Cloos (1886–1951). In: Proc Geological Society of America, Annual Report for 1952, pp 87–94Google Scholar
  7. Barton NR, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6:183–236Google Scholar
  8. Baynes FJ (1996) Where is geotechnical practice heading? An engineering geologist's perspective. In: Jaksa, Kaggwa, Cameron (eds) Proc 7th Australian/New Zealand Conf on Geomechanics, pp 583–584Google Scholar
  9. Bell FG (2000) Engineering properties of soils and rocks, 2nd edn. Blackwell Science, Oxford, 482 ppGoogle Scholar
  10. Bieniawski ZT (1989) Rock mass classifications. Wiley, New York, 251 ppGoogle Scholar
  11. Bjerrum L, Casagrande A, Peck RB, Skempton AW (1960) From theory to practice in soil mechanics. Wiley, New York, 424 ppGoogle Scholar
  12. Brierley GS (1998) Subsurface investigations and geotechnical report preparation. In: Hatem DJ (ed) Subsurface conditions. Risk management for design and construction management professionals. Wiley, New York, 465 ppGoogle Scholar
  13. British Standards Institution (1999) Code of Practice for site investigations. BS 5930:1999. British Standards Institution, London, 192 ppGoogle Scholar
  14. Brown ET, Hoek E (1978) Trends in relationships between measured in situ stresses and depth. Int J Rock Mech Min Sci 17:18–48Google Scholar
  15. Brunsden D (2002) Geomorphological roulette for engineers and planners: some insights into an old game. Q J Eng Geol Hydrogeol35:101–142Google Scholar
  16. Clayton CRI (2001) Managing geotechnical risk. Thomas Telford, London, 80 ppGoogle Scholar
  17. Clayton CRI, Matthews MC, Simons NE (1995) Site investigations. Blackwell Science, Oxford, 584 ppGoogle Scholar
  18. Cloos H (1954) Conversation with the Earth. Routledge and Kegan Paul, London, 409 ppGoogle Scholar
  19. Construction Industry Research and Information Association (1978) Tunnelling—improved contract practices. CIRIA, London, 69 pp Google Scholar
  20. Dearman WR, Baynes FJ, Irfan TY (1978) Engineering grading of weathered granite. Eng Geol 12:345–374Google Scholar
  21. Essex RJ (1997) Geotechnical baseline reports for underground construction. Guidelines and practices. American Society of Civil Engineers, Baltimore, 40 ppGoogle Scholar
  22. Fookes PG (1997a) Geology for engineers: the geological model, prediction and performance. Q J Eng Geol 30:293–424Google Scholar
  23. Fookes PG (ed) (1997b) Tropical residual soils. Geological Society of London, London, 184 ppGoogle Scholar
  24. Fookes PG, Hawkins AB (1988) Limestone weathering: its engineering significance and a proposed classification. Q J Eng Geol 21:7–31Google Scholar
  25. Fookes PG, Gordon DL, Higginbottom IE (1975) Glacial landforms, their deposits and engineering characteristics. In: Proc Symp The Engineering Behaviour of Glacial Materials, Midlands Society of Soil Mechanics and Foundation Engineering, pp 18–51Google Scholar
  26. Fookes PG, Baynes FJ, Hutchinson JH (2000) Total geological history: a model approach to the anticipation, observation and understanding of site conditions. In: Proc Int Conf on Geotechnical and Geological Engineering, Technomic, vol 1, pp 370–460Google Scholar
  27. Geological Society of London Engineering Group (1970) The logging of rock cores for engineering purposes. Q J Eng Geol 3:1–24 Google Scholar
  28. Geotechnical Control Office (1987) Guide to site investigation. Geoguide 2. Civil Engineering Services Department, Hong Kong, 365 ppGoogle Scholar
  29. Geotechnical Control Office (1988) Guide to rock and soil descriptions. Geoguide 3. Civil Engineering Services Department, Hong Kong, 191 ppGoogle Scholar
  30. Goodman RE (1999) Karl Terzaghi. The engineer as an artist. American Society of Civil Engineers, Baltimore, 340 ppGoogle Scholar
  31. Gould N, Capper P, Dixon G, Cohen M (1999) Dispute resolution in the construction industry. Thomas Telford, London, 222 ppGoogle Scholar
  32. Hoek E, Palmieri A (1998) Geotechnical risks on large civil engineering projects. Proc 8th Congr IAEG 1:79–88Google Scholar
  33. Kiersch GA (1955) Engineering geology. Q Colo Sch Mines 30:122 ppGoogle Scholar
  34. Kiersch GA (ed) (1991) The heritage of engineering geology; the first hundred years. Geol Soc Am Cent Spec Vol 3, 605 ppGoogle Scholar
  35. Knill JL (1970) Environmental geology. Proc Geol Assoc 81:529–537Google Scholar
  36. Knill JL (1972) Engineering geology in reservoir construction in south west England. Proc Ussher Soc 2:359–371Google Scholar
  37. Knill JL (1976) Cow Green revisited. Inaugural lectures. Imperial College, London, pp 61–71Google Scholar
  38. Knill JL (1978) In: Bell FG (ed) Geology and foundations. Newnes-Butterworths, Oxford, 598 ppGoogle Scholar
  39. Knill JL (1987) The engineering geologist as an expert witness. Planning and engineering geology. Geol Soc Lond Eng Group Spec Publ 4:629–632Google Scholar
  40. Knill JL (1990) Storage and disposal. Proc Int Conf Br Nuclear Energy Soc 2:97–104Google Scholar
  41. Knill JL (1991) Sufficiency of proof, authority and environmental culture. Moore Lecture, University of SheffieldGoogle Scholar
  42. Knill JL (1994) Engineering geological mapping and site investigation. Prediction in engineering geology. Proc 6th Congr IAEG 5:3227–3234Google Scholar
  43. Knill J (2001a) Environmental change and engineering geology: our global challenge. Engineering geology and the environment. AA Balkema, Rotterdam 4:3355–3361Google Scholar
  44. Knill JL (2001b) Geological uncertainty and geotechnical risk determination. Proc 14th Southeast Asian Geotech Conf 1:129–134Google Scholar
  45. Knill JL (2001c) Geotechnical engineering in a changing world. Proc 14th Southeast Asian Geotech Conf 1:3–14Google Scholar
  46. Knill JL, Jones KS (1965) The recording and interpretation of geological conditions in the foundations of the Roseires, Kariba and Latiyan dams. Géotechnique 15:94–124Google Scholar
  47. Krynine DP, Judd WR (1957) Principles of engineering geology and geotechnics. McGraw-Hill, New York, 730 ppGoogle Scholar
  48. Lapworth H (1911) The geology of dam trenches. Trans Assoc Water Eng 16Google Scholar
  49. Legget RF (1962) Geology and engineering, 2nd edn. McGraw-Hill, New York, 883 ppGoogle Scholar
  50. Legget RF, Karrow PF (1982) Handbook of geology in civil engineering. McGraw-Hill, New YorkGoogle Scholar
  51. Lugeon M (1933) Barrages et géologie. F Rouge et Cie, Dunod, ParisGoogle Scholar
  52. Martin RP (2000) Geological input to slope engineering in Hong Kong. In: Proc Conf Engineering Geology HK 2000, Institution of Mining and Metallurgy, 218 ppGoogle Scholar
  53. Matyas RM, Mathews AL, Smith Sperry PE (1995) Construction dispute review board manual. McGraw-Hill, New York, 173 ppGoogle Scholar
  54. Milanovic PT (2000) Geological engineering in karst. Zebra, Belgrade, 347 ppGoogle Scholar
  55. Morgenstern NR (2000) Common Ground. In: Proc Int Conf on Geotechnical and Geological Engineering, Technomic, vol 1, pp 1–30Google Scholar
  56. Morgenstern NR, Cruden DM (1977) Description and classification of geotechnical complexities. In: Proc Int Symp on the Geotechnics of Structurally Complex Formations, vol 2, pp 195–203Google Scholar
  57. Morgenstern NR, Eigenbrod KD (1974) Classification of argillaceous soils and rocks. Proc Am Soc Civ Eng J Geotech Div 100:1137–1156Google Scholar
  58. Morrell D (1987) Indictment. Power and politics in the construction industry. Faber and Faber, London, 287 ppGoogle Scholar
  59. Müller L (1974) Engineering geology today. Bull IAEG 9:75–78Google Scholar
  60. Müller-Salzburg L (1976) Geology and engineering geology. Reflections on the occasion of the 25th anniversary of the death of Hans Cloos. Bull IAEG 13:35–36Google Scholar
  61. Nicholson D, Tse C-M, Penny C (1999) The observational method in ground engineering: principles and applications. Construction Industry Research and Information Association, London, 214 ppGoogle Scholar
  62. Paige S (ed) (1950) Application of geology to engineering practice. Berkey Volume. Geological Society of America, Washington, DC, 327 ppGoogle Scholar
  63. Peck RB (1969) Advantages and limitations of the observational method in applied soil mechanics. Géotechnique 19:171–187Google Scholar
  64. Price DG, Knill JL (1974) Scale in the planning of site investigations. Proc 2nd Int Congr IAEG 1(1–5):1–8Google Scholar
  65. Rziha F (1874) Lehrbuch ger gesammten tunnelbaukenst, 2nd edn. Verlag von Ernst und KornGoogle Scholar
  66. Skempton AW, Chrimes MM (1994) Thames Tunnel: geology, site investigation and geotechnical problems. Géotechnique 44:191–216Google Scholar
  67. Taylor RK (1988) Coal Measures mudrocks: composition, classification and weathering processes. Q J Eng Geol 21:85–99Google Scholar
  68. Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer. Grundlage, Translated by A Casagrande (1960). In: From theory to practice in soil mechanics. Wiley, New York, pp 146–148Google Scholar
  69. Winchester S (2001) The map that changed the world. Penguin Books, Harmondsworth, 338 ppGoogle Scholar
  70. Wolters R (1976) Hans Cloos 1885–51. Graphic representations of geological structures and their regional relationships. Bull IAEG 13:3–33Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • John Knill

There are no affiliations available

Personalised recommendations