Skip to main content
Log in

Batch adsorption tests of phenol in soils

  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

The results of a study on adsorption of phenol in granite residual soil and kaolinite are presented. Experiments were conducted using batch adsorption procedures at low phenol concentrations, i.e. from 0.8 to 10 mg/L, and at higher concentrations, i.e. from 10 to 100 mg/L. The interactions have been studied with respect to the linear, Freundlich and Langmuir adsorption isotherms. It is found that the residual soil possesses greater adsorption capacity compared to that of kaolinite. For example, the linear partition coefficient, K d, for the residual soil–phenol interaction is about 10.48 L/kg while the corresponding value for the kaolinite–phenol system is 1.18 L/kg. The highly non-linear relationship, which covers the whole set of data, was transformed linearly using the linearized Freundlich and Langmuir isotherms. The linearized Langmuir plot for low concentration data may be used to estimate the maximum adsorption capacity of the soil. From limited studies it is also concluded that the granite residual soil has a great potential for use as a soil liner material.

Résumé.

Les résultats d'une étude sur l'adsorption de phénol par des sols résiduels granitiques et la kaolinite sont présentés. Les expériences ont été conduites en réalisant des tests d'adsorption (tests conventionnels en batch) avec d'une part, des faibles concentrations de phénol, de 0,8 à 10 mg/l, et d'autre part, de plus fortes concentrations, de 10 à 100 mg/l. Les interactions ont été étudiées par référence aux isothermes d'adsorption de Freundlich et Langmuir. Il apparaît que le sol résiduel présente une plus grande capacité d'adsorption que la kaolinite. Par exemple, le coefficient de partition linéaire Kd, pour l'interaction sol résiduel–kaolinite est d'environ 10,48 l/kg tandis que la valeur correspondante pour le système kaolinite - phénol est de 1,18 l/kg. La relation fortement non linéaire, qui concerne l'ensemble des données, a été transformée en utilisant les isothermes linéarisées de Freundlich et Langmuir. La fonction linéarisée de Langmuir pour les faibles concentrations peut être utilisée pour estimer la capacité maximale d'adsorption du sol. A partir de ces quelques études on peut aussi conclure que le sol granitique résiduel présente un fort potentiel comme matériau de confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Acar YB, Li H, Gale RG (1992) Phenol removal from kaolinite by electrokinetics. J Geotech Eng ASCE 118(11):1837–1852

    Article  Google Scholar 

  • Bedient PB, Rifai HS, Newell CJ (1994) Ground water contamination: transport and remediation. Prentice Hall, Englewood Cliffs, New Jersey, 541 pp

  • Brady NC (1974) The nature and properties of soils, 8th edn. Macmillan, New York, 639 pp

  • Fetter CW (1988) Applied hydrogeology. Macmillan, New York, 592 pp

  • Freundlich H (1926) Colloid and capillary chemistry. Methuen, London

  • Gobbett DJ, Hutchison CS (1973) Geology of Peninsular Malaysia. Wiley-Interscience, New York, 439 pp

  • Holzlohner U, August H, Meggyes T (1997) Contaminant transport, fundamentals and minimisation. In: August H, Holzlohner U, Meggyes T (eds) Advanced landfill liner. Thomas Telford, London, pp 31–37

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1382

    Article  Google Scholar 

  • McBride MB (2000) Chemisorption and precipitation reactions. In: Sumner ME (ed-in-chief) Handbook of soil science. CRC Press, Boca Raton, pp B265–B302

  • Mofiz SA (2000) Behavior of unreinforced and reinforced residual granite soil. PhD Thesis, Universiti Kebangsaan, Malaysia, 315 pp

  • Ponec V, Knor Z, Cerny S (1974) Adsorption on solids. Butterworths, London, 693 pp

  • Saltzman S, Yariv S (1975) Infrared study of sorption of phenol and p-nitrophenol by montmorillonite. Soil Sci Soc Am Proc 39(3):474-479

    Article  Google Scholar 

  • Shackelford CD (1993) Contaminant transport. In: Daniel DE (ed) Geotechnical practice for waste disposal. Chapman and Hall, London, pp 33–63

  • Taha MR (2001) Some aspects related to clean-up of contaminated soils. In: Proc Brownfield 2001, Institution of Engineers Malaysia, Petaling Jaya, Selangor, Malaysia

  • Taha MR, Debnath DK (1999) Interaction of cyanide with residual soil and kaolinite in batch adsorption tests. J Inst Eng Malaysia 60(3):49–57

    Google Scholar 

  • Tan KH (1993) Principles of soil chemistry. Marcel Dekker, New York

  • Veith JA, Sposito G (1977) On the use of the Langmuir equation in the interpretation of adsorption phenomena. J Am Soil Sci Soc 41:697–702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Taha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taha, M.R., Leng, T.O., Mohamad, A.B. et al. Batch adsorption tests of phenol in soils. Bull Eng Geol Environ 62, 251–257 (2003). https://doi.org/10.1007/s10064-002-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-002-0181-2

Keywords.

Mots clés.

Navigation