Skip to main content
Log in

Identification of two HIV inhibitors that also inhibit human RNaseH2

  • Published:
Molecules and Cells

Abstract

A total of 140,000 compounds were screened in a targetfree cell-based high throughput assay against HIV-1 infection, and a subset of 81 promising compounds was identified. Secondary screening of these 81 compounds revealed two putative human RNaseH2 inhibitors, RHI001 and RHI002, with IC50 value of 6.8 μM and 16 μM, respectively. RHI002 showed selective activity against human RNaseH2 while RHI001 inhibited HIV-RNaseH, E. coli RNaseH, and human RNaseH1 with IC50 value of 28.5 μM, 7.9 μM, and 31.7 μM, respectively. Kinetic analysis revealed that both inhibitors had non-competitive inhibitor-like properties. Because RNaseH2 is involved in the etiology of Aicardi-Goutier syndrome and has been suggested as an anticancer drug target, small molecule inhibitors modulating its activity would be useful for investigating the cellular function of this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aicardi, J., and Goutieres, F. (1984). A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Chon, H., Vassilev, A., DePamphilis, M.L., Zhao, Y., Zhang, J., Burgers, P.M., Crouch, R.J., and Cerritelli, S.M. (2009). Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNaseH2 complex. Nucleic Acids Res. 37, 96–110.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, R.A. (2003). Mechanistic considerations in high-throughput screening. Anal. Biochem. 320, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Crow, Y.J., Leitch, A., Hayward, B.E., Garner, A., Parmar, R., Griffith, E., Ali, M., Semple, C., Aicardi, J., Babul-Hirji, R., et al. (2006). Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, J.M., Funes, F.M., Henderson, S., Wild, L., Carey, N., and Boshoff, C. (2009). Genomics screen in transformed stem cells reveals RNASEH2A, PPAP2C, and ADARB1 as putative anticancer drug targets. Mol. Cancer Ther. 8, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Gao, F., Li, Y., Decker, J.M., Peyerl, F.W., Bibollet-Ruche, F., Rodenburg, C.M., Chen, Y., Shaw, D.R., Allen, S., Musonda, R., et al. (2003). Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice. AIDS Res. Hum. Retroviruses 19, 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Genovesio, A., Kwon, Y.J., Windisch, M.P., Kim, N.Y., Choi, S.Y., Kim, H.C., Jung, S., Mammano, F., Perrin, V., Boese, A.S., et al. (2011). Automated genome wide profiling of cellular proteins involved in HIV infection. J. Biomol. Screen 16, 945–958.

    Article  PubMed  CAS  Google Scholar 

  • Goutieres, F. (2005). Aicardi-Goutieres syndrome. Brain Dev. 27, 201–206.

    Article  PubMed  Google Scholar 

  • Goutieres, F., Aicardi, J., Barth, P.G., and Lebon, P. (1998). Aicardi-Goutieres syndrome: an update and results of interferon-alpha studies. Ann. Neurol. 44, 900–907.

    Article  PubMed  CAS  Google Scholar 

  • Hiller, B., Achleitner, M., Glage, S., Naumann, R., Behrendt, R., and Roers, A. (2012). Mammalian RNaseH2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419–1426.

    Article  PubMed  CAS  Google Scholar 

  • Reijns, M.A., Rabe, B., Rigby, R.E., Mill, P., Astell, K.R., Lettice, L.A., Boyle, S., Leitch, A., Keighren, M., Kilanowski, F., et al. (2012). Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022.

    Article  PubMed  CAS  Google Scholar 

  • Rice, G., Patrick, T., Parmar, R., Taylor, C.F., Aeby, A., Aicardi, J., Artuch, R., Montalto, S.A., Bacino, C.A., Barroso, B., et al. (2007). Clinical and molecular phenotype of Aicardi-Goutieres Syndrome. Am. J. Hum. Genet. 81, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, P., Vartanian, J.P., Wachsmuth, M., Henry, M., Guetard, D., and Wain-Hobson, S. (2004). Anti-termination by SIV Tat requires flexibility of the nascent TAR structure. J. Mol. Biol. 344, 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, O., and Akira S. (2009). Innate immunity to virus infection. Immunol. Rev. 227, 75–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jun Han.

About this article

Cite this article

Kim, J., Yoon, J., Ju, M. et al. Identification of two HIV inhibitors that also inhibit human RNaseH2. Mol Cells 36, 212–218 (2013). https://doi.org/10.1007/s10059-013-2348-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2348-z

Keywords

Navigation