Molecules and Cells

, Volume 35, Issue 6, pp 481–488 | Cite as

Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis

  • Hye Sup Yun
  • Mark Kwaaitaal
  • Naohiro Kato
  • Changhyun Yi
  • Sohyeon Park
  • Masa H. Sato
  • Paul Schulze-LefertEmail author
  • Chian KwonEmail author
Research Article


Extracellular immune responses to ascomycete and oomycete pathogens in Arabidopsis are dependent on vesicle-associated secretion mediated by the SNARE proteins PEN1 syntaxin, SNAP33 and endomembrane-resident VAMP721/722. Continuous movement of functional GFP-VAMP722 to and from the plasma membrane in non-stimulated cells reflects the second proposed function of VAMP721/722 in constitutive secretion during plant growth and development. Application of the bacterium-derived elicitor flg22 stabilizes VAMP721/722 that are otherwise constitutively degraded via the 26S proteasome pathway. Depletion of VAMP721/722 levels by reducing VAMP721/722 gene dosage enhances flg22-induced seedling growth inhibition in spite of elevated VAMP721/722 abundance. We therefore propose that plants prioritize the deployment of the corresponding secretory pathway for defense over plant growth. Interstingly, VAMP721/722 specifically interact in vitro and in vivo with the plasma membrane syntaxin SYP132 that is required for plant growth and resistance to bacteria. This suggests that the plant growth/immunity-involved VAMP721/722 form SNARE complexes with multiple plasma membrane syntaxins to discharge cue-dependent cargo molecules.


plant growth plant immune responses PM syntaxins secretion VAMP721/722 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assaad, F.F., Qiu, J.L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S.C., Edwards, H., Ramonell, K., et al. (2004). The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15, 5118–5129.PubMedCrossRefGoogle Scholar
  2. Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101–106.PubMedCrossRefGoogle Scholar
  3. Benschop, J.J., Mohammed, S., O’Flaherty, M., Heck, A.J., Slijper, M., and Menke, F.L. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214.PubMedCrossRefGoogle Scholar
  4. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.PubMedCrossRefGoogle Scholar
  5. Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D.G., Hasek, J., Paciorek, T., Petrasek, J., Seifertova, D., Tejos, R., et al. (2008). Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 105, 4489–4494.PubMedCrossRefGoogle Scholar
  6. Dixon, R.A. (2001). Natural products and plant disease resistance. Nature 411, 843–847.PubMedCrossRefGoogle Scholar
  7. Ebine, K., Fujimoto, M., Okatani, Y., Nishiyama, T., Goh, T., Ito, E., Dainobu, T., Nishitani, A., Uemura, T., Sato, M.H., et al. (2011). A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13, 853–859.PubMedCrossRefGoogle Scholar
  8. Enami, K., Ichikawa, M., Uemura, T., Kutsuna, N., Hasezawa, S., Nakagawa, T., Nakano, A., and Sato, M.H. (2009). Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol. 50, 280–289.PubMedCrossRefGoogle Scholar
  9. Fujikawa, Y., and Kato, N. (2007). Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. Plant J. 52, 185–195.PubMedCrossRefGoogle Scholar
  10. Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284.PubMedCrossRefGoogle Scholar
  11. Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F., and Jurgens, G. (2001). Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol. 155, 239–249.PubMedCrossRefGoogle Scholar
  12. Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S., and Davis, M.M. (2006). T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255.PubMedCrossRefGoogle Scholar
  13. Jahn, R., and Scheller, R.H. (2006). SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.PubMedCrossRefGoogle Scholar
  14. Jaiswal, J.K., Rivera, V.M., and Simon, S.M. (2009). Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137, 1308–1319.PubMedCrossRefGoogle Scholar
  15. Kalde, M., Nuhse, T.S., Findlay, K., and Peck, S.C. (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. USA 104, 11850–11855.PubMedCrossRefGoogle Scholar
  16. Kato, N., Fujikawa, Y., Fuselier, T., Adamou-Dodo, R., Nishitani, A., and Sato, M.H. (2010). Luminescence detection of SNARESNARE interaction in Arabidopsis protoplasts. Plant Mol. Biol. 72, 433–444.PubMedCrossRefGoogle Scholar
  17. Kombrink, E., and Hahlbrock, K. (1986). Responses of cultured parsley cells to elicitors from phytopathogenic fungi: timing and dose dependency of elicitor-induced reactions. Plant Physiol. 81, 216–221.PubMedCrossRefGoogle Scholar
  18. Kwon, C., Bednarek, P., and Schulze-Lefert, P. (2008a). Secretory pathways in plant immune responses. Plant Physiol. 147, 1575–1583.PubMedCrossRefGoogle Scholar
  19. Kwon, C., Panstruga, R., and Schulze-Lefert, P. (2008b). Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol. 29, 159–166.PubMedCrossRefGoogle Scholar
  20. Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., et al. (2008c). Co-option of a default secretory pathway for plant immune responses. Nature 451, 835–840.PubMedCrossRefGoogle Scholar
  21. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., et al. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180–1183.PubMedCrossRefGoogle Scholar
  22. Lipka, V., Kwon, C., and Panstruga, R. (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147–174.PubMedCrossRefGoogle Scholar
  23. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980.PubMedCrossRefGoogle Scholar
  24. Meyer, D., Pajonk, S., Micali, C., O’Connell, R., and Schulze-Lefert, P. (2009). Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J. 57, 986–999.PubMedCrossRefGoogle Scholar
  25. Nomura, K., Debroy, S., Lee, Y.H., Pumplin, N., Jones, J., and He, S.Y. (2006). A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313, 220–223.PubMedCrossRefGoogle Scholar
  26. Nuhse, T.S., Boller, T., and Peck, S.C. (2003). A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J. Biol. Chem. 278, 45248–45254.PubMedCrossRefGoogle Scholar
  27. Otegui, M.S., and Spitzer, C. (2008). Endosomal functions in plants. Traffic 9, 1589–1598.PubMedCrossRefGoogle Scholar
  28. Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-Lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974–26984.PubMedCrossRefGoogle Scholar
  29. Pickett, J.A., and Edwardson, J.M. (2006). Compound exocytosis: mechanisms and functional significance. Traffic 7, 109–116.PubMedCrossRefGoogle Scholar
  30. Richter, C., West, M., and Odorizzi, G. (2007). Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies. EMBO J. 26, 2454–2464.PubMedCrossRefGoogle Scholar
  31. Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S., and Schulze-Lefert, P. (2009). Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J. 28, 3439–3449.PubMedCrossRefGoogle Scholar
  32. Sanderfoot, A. (2007). Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 6–17.PubMedCrossRefGoogle Scholar
  33. Sanderfoot, A.A., Kovaleva, V., Bassham, D.C., and Raikhel, N.V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12, 3733–3743.PubMedGoogle Scholar
  34. Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V., and Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18, 731–746.PubMedCrossRefGoogle Scholar
  35. Uemura, T., Ueda, T., Ohniwa, R.L., Nakano, A., Takeyasu, K., and Sato, M.H. (2004). Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65.PubMedCrossRefGoogle Scholar
  36. Ungar, D., and Hughson, F.M. (2003). SNARE protein structure and function. Annu. Rev. Cell Dev. Biol. 19, 493–517.PubMedCrossRefGoogle Scholar
  37. van Loon, L.C., Rep, M., and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162.PubMedCrossRefGoogle Scholar
  38. Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308, 1036–1040.PubMedCrossRefGoogle Scholar
  39. Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T.H., and Rothman, J.E. (1998). SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.PubMedCrossRefGoogle Scholar
  40. Yoo, H.H., Kwon, C., and Chung, I.K. (2010). An Arabidopsis splicing RNP variant STEP1 regulates telomere length homeostasis by restricting access of nuclease and telomerase. Mol. Cells 30, 279–283.PubMedCrossRefGoogle Scholar
  41. Zhang, Z., Feechan, A., Pedersen, C., Newman, M.A., Qiu, J.L., Olesen, K.L., and Thordal-Christensen, H. (2007). A SNAREprotein has opposing functions in penetration resistance and defence signalling pathways. Plant J. 49, 302–312.PubMedCrossRefGoogle Scholar
  42. Zhang, L., Zhang, H., Liu, P., Hao, H., Jin, J.B., and Lin, J. (2011). Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6, e26129.PubMedCrossRefGoogle Scholar
  43. Zhu, Y., Xu, J., and Heinemann, S.F. (2009). Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61, 397–411.PubMedCrossRefGoogle Scholar
  44. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767.PubMedCrossRefGoogle Scholar
  45. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EFTu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Hye Sup Yun
    • 1
    • 2
  • Mark Kwaaitaal
    • 1
  • Naohiro Kato
    • 3
  • Changhyun Yi
    • 4
  • Sohyeon Park
    • 4
  • Masa H. Sato
    • 5
  • Paul Schulze-Lefert
    • 1
    Email author
  • Chian Kwon
    • 1
    • 4
    • 6
    Email author
  1. 1.Deparment of Plant Microbe InteractionsMax-Planck-Institut für ZüchtungsforschungKölnGermany
  2. 2.Biological Sciences Major, College of Biological Science and BiotechnologyKonkuk UniversitySeoulKorea
  3. 3.Department of Biological SciencesLouisiana State UniversityNew OrleansUSA
  4. 4.Department of Molecular BiologyDankook UniversityYonginKorea
  5. 5.Laboratory of Cellular Dynamics, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
  6. 6.Department of Integrated Molecular SciencesDankook UniversityYonginKorea

Personalised recommendations