Molecules and Cells

, Volume 36, Issue 6, pp 477–484 | Cite as

Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine

  • Eung-Sam Kim
  • Eun Hyun Ahn
  • Euiheon Chung
  • Deok-Ho Kim
Minireview

Abstract

Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnologybased materials and living cells in both in vitro and in vivo settings.

Keywords

bioimaging microarray microfluidics nanomaterials nanotechnology next generation DNA sequencing quantum dot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aderem, A. (2005). Systems biology: its practice and challenges. Cell 121, 511–513.PubMedCrossRefGoogle Scholar
  2. Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N., and Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621.PubMedCrossRefGoogle Scholar
  3. Ananthanarayanan, V., and Thies, W. (2010). Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4, 13.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  5. Burg, T.P., and Manalis, S.R. (2003). Suspended microchannel resonators for biomolecular detection. Appl. Physics Lett. 83, 2698–2700.CrossRefGoogle Scholar
  6. Cheki, M., Moslehi, M., and Assadi, M. (2013). Marvelous applications of quantum dots. Eur. Rev. Med. Pharmacol. Sci. 17, 1141–1148.PubMedGoogle Scholar
  7. Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., Bawendi, M.G., and Frangioni, J.V. (2007). Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chuang, H.Y., Hofree, M., and Ideker, T. (2010). A decade of systems biology. Annu. Rev. Cell Dev. Biol. 26, 721–744.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P.S., Rothenberg, M. E., Leyrat, A.A., Sim, S., Okamoto, J., Johnston, D.M., Qian, D., et al. (2011). Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Damalakiene, L., Karabanovas, V., Bagdonas, S., Valius, M., and Rotomskis, R. (2013). Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection. Int. J. Nanomed. 8, 555–568.CrossRefGoogle Scholar
  11. Daniel, M.C., and Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346.PubMedCrossRefGoogle Scholar
  12. Davies, K. (2010). The the revolution in DNA sequencing and the new era of personalized medicine. (New York, NY: Free Press).Google Scholar
  13. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138.PubMedCrossRefGoogle Scholar
  14. Elf, J., Li, G.W., and Xie, X.S. (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fortin, J.P., Wilhelm, C., Servais, J., Menager, C., Bacri, J.C., and Gazeau, F. (2007). Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635.PubMedCrossRefGoogle Scholar
  16. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., and Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976.PubMedCrossRefGoogle Scholar
  17. Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., and Nie, S. (2005). In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72.PubMedCrossRefGoogle Scholar
  18. Gupta, A.K., Naregalkar, R.R., Vaidya, V.D., and Gupta, M. (2007). Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2, 23–39.PubMedCrossRefGoogle Scholar
  19. Hardman, R. (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Harris, T.J., von Maltzahn, G., Lord, M.E., Park, J.H., Agrawal, A., Min, D.H., Sailor, M.J., and Bhatia, S.N. (2008). Protease-triggered unveiling of bioactive nanoparticles. Small 4, 1307–1312.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hood, L. (2013). Systems biology and p4 medicine: past, present, and future. Rambam Maimonides Med. J. 4, e0012.PubMedCentralPubMedGoogle Scholar
  22. Hood, L., and Friend, S.H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 8, 184–187.PubMedCrossRefGoogle Scholar
  23. Houseman, B.T., Huh, J.H., Kron, S.J., and Mrksich, M. (2002). Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274.PubMedCrossRefGoogle Scholar
  24. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., and Ingber, D.E. (2010). Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668.PubMedCrossRefGoogle Scholar
  25. Ideker, T. (2004). Systems biology 101—what you need to know. Nat. Biotechnol. 22, 473–475.PubMedCrossRefGoogle Scholar
  26. Jain, R.K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62.PubMedCrossRefGoogle Scholar
  27. Kennedy, S.R., Salk, J.J., Schmitt, M.W., and Loeb, L.A. (2013). Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9, e1003794.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kim, J., Junkin, M., Kim, D.H., Kwon, S., Shin, Y.S., Wong, P.K., and Gale, B.K. (2009). Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid. Nanofluidics 7, 149–167.CrossRefGoogle Scholar
  29. Kim, D.H., Lipke, E.A., Kim, P., Cheong, R., Thompson, S., Delannoy, M., Suh, K.Y., Tung, L., and Levchenko, A. (2010). Nano-scale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl. Acad. Sci. USA 107, 565–570.PubMedCrossRefGoogle Scholar
  30. Kim, E.S., Hong, B.J., Park, C.W., Kim, Y., Park, J.W., and Choi, K.Y. (2011a). Effects of lateral spacing on enzymatic on-chip DNA polymerization. Biosens. Bioelectron. 26, 2566–2573.PubMedCrossRefGoogle Scholar
  31. Kim, I.H., Lee, M.N., Ryu, S.H., and Park, J.W. (2011b). Nanoscale mapping and affinity constant measurement of signal-transducing proteins by atomic force microscopy. Anal. Chem. 83, 1500–1503.PubMedCrossRefGoogle Scholar
  32. Kim, D.H., Kshitiz, Smith, R.R., Kim, P., Ahn, E.H., Kim, H.N., Marban, E., Suh, K.Y., and Levchenko, A. (2012a). Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr. Biol. 4, 1019–1033.CrossRefGoogle Scholar
  33. Kim, D.H., Provenzano, P.P., Smith, C.L., and Levchenko, A. (2012b). Matrix nanotopography as a regulator of cell function. J. Cell Biol. 197, 351–360.PubMedCrossRefGoogle Scholar
  34. Kim, E.S., Kim, J.S., Lee, Y., Choi, K.Y., and Park, J.W. (2012c). Following the DNA ligation of a single duplex using atomic force microscopy. ACS Nano 6, 6108–6114.PubMedCrossRefGoogle Scholar
  35. Kim, E.S., Shim, C.K., Lee, J.W., Park, J.W., and Choi, K.Y. (2012d). Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay. Analyst 137, 2421–2430.PubMedCrossRefGoogle Scholar
  36. Kim, E.S., Jang, D.S., Yang, S.Y., Lee, M.N., Jin, K.S., Cha, H.J., Kim, J.K., Sung, Y.C., and Choi, K.Y. (2013). Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane. Nanoscale 5, 4262–4269.PubMedCrossRefGoogle Scholar
  37. Kirschner, M.W. (2005). The meaning of systems biology. Cell 121, 503–504.PubMedCrossRefGoogle Scholar
  38. Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., and Mardis, E.R. (2013). The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38.PubMedCrossRefGoogle Scholar
  39. Kodera, N., Yamamoto, D., Ishikawa, R., and Ando, T. (2010). Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76.PubMedCrossRefGoogle Scholar
  40. Lau, B.T., Baitz, C.A., Dong, X.P., and Hansen, C.L. (2007). A complete microfluidic screening platform for rational protein crystallization. J. Am. Chem. Soc. 129, 454–455.PubMedCrossRefGoogle Scholar
  41. Lee, J.H., Jang, J.T., Choi, J.S., Moon, S.H., Noh, S.H., Kim, J.W., Kim, J.G., Kim, I.S., Park, K.I., and Cheon, J. (2011). Exchangecoupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422.PubMedCrossRefGoogle Scholar
  42. Li, M., Tang, H.X., and Roukes, M.L. (2007). Ultra-sensitive NEMSbased cantilevers for sensing, scanned probe and very highfrequency applications. Nat. Nanotechnol. 2, 114–120.PubMedCrossRefGoogle Scholar
  43. Lim, J.Y., Shaughnessy, M.C., Zhou, Z., Noh, H., Vogler, E.A., and Donahue, H.J. (2008). Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 29, 1776–1784.PubMedCrossRefGoogle Scholar
  44. Maerkl, S.J., and Quake, S.R. (2007). A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233–237.PubMedCrossRefGoogle Scholar
  45. Malic, L., Brassard, D., Veres, T., and Tabrizian, M. (2010). Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10, 418–431.PubMedCrossRefGoogle Scholar
  46. Mark, D., Haeberle, S., Roth, G., von Stetten, F., and Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153–1182.PubMedCrossRefGoogle Scholar
  47. Mendonca, G., Mendonca, D.B., Aragao, F.J., and Cooper, L.F. (2008). Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials 29, 3822–3835.PubMedCrossRefGoogle Scholar
  48. Meyvantsson, I., and Beebe, D.J. (2008). Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449.CrossRefGoogle Scholar
  49. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Miele, E., Spinelli, G.P., Miele, E., Di Fabrizio, E., Ferretti, E., Tomao, S., and Gulino, A. (2012). Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomed. 7, 3637–3657.Google Scholar
  51. Oh, E.H., Song, H.S., and Park, T.H. (2011). Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb. Technol. 48, 427–437.PubMedCrossRefGoogle Scholar
  52. Osborne, G.W. (2011). Recent advances in flow cytometric cell sorting. Methods Cell Biol. 102, 533–556.PubMedCrossRefGoogle Scholar
  53. Ottesen, E.A., Hong, J.W., Quake, S.R., and Leadbetter, J.R. (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467.PubMedCrossRefGoogle Scholar
  54. Powell, A.A., Talasaz, A.H., Zhang, H., Coram, M.A., Reddy, A., Deng, G., Telli, M.L., Advani, R.H., Carlson, R.W., Mollick, J.A., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7, e33788.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Prakash, M., and Gershenfeld, N. (2007). Microfluidic bubble logic. Science 315, 832–835.PubMedCrossRefGoogle Scholar
  56. Ray, S., Mehta, G., and Srivastava, S. (2010). Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 10, 731–748.PubMedCrossRefGoogle Scholar
  57. Richert, L., Vetrone, F., Yi, J.H., Zalzal, S.F., Wuest, J.D., Rosei, F., and Nanci, A. (2008). Surface nanopatterning to control cell growth. Adv. Mater. 20, 1488–1492.CrossRefGoogle Scholar
  58. Rizzo, J.M., and Buck, M.J. (2012). Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev. Res. 5, 887–900.CrossRefGoogle Scholar
  59. Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mileski, W., Davey, M., Leamon, J.H., Johnson, K., Milgrew, M.J., Edwards, M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352.PubMedCrossRefGoogle Scholar
  60. Ruoslahti, E. (2002). Specialization of tumour vasculature. Nat. Rev. Cancer 2, 83–90.PubMedCrossRefGoogle Scholar
  61. Sadik, O.A., Aluoch, A.O., and Zhou, A. (2009). Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron. 24, 2749–2765.PubMedCrossRefGoogle Scholar
  62. Sanchez-Freire, V., Ebert, A.D., Kalisky, T., Quake, S.R., and Wu, J.C. (2012). Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat. Protoc. 7, 829–838.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Saunders, C.J., Miller, N.A., Soden, S.E., Dinwiddie, D.L., Noll, A., Alnadi, N.A., Andraws, N., Patterson, M.L., Krivohlavek, L.A., Fellis, J., et al. (2012). Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Transl. Med. 4, 154ra135.PubMedGoogle Scholar
  64. Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M., Moore, V.C., Doyle, C.D., West, J.L., Billups, W.E., et al. (2006). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161, 135–142.PubMedCrossRefGoogle Scholar
  65. Schmitt, M.W., Kennedy, S.R., Salk, J.J., Fox, E.J., Hiatt, J.B., and Loeb, L.A. (2012). Detection of ultra-rare mutations by nextgeneration sequencing. Proc. Natl. Acad. Sci. USA 109, 14508–14513.PubMedCrossRefGoogle Scholar
  66. Siegel, A.C., Tang, S.K., Nijhuis, C.A., Hashimoto, M., Phillips, S.T., Dickey, M.D., and Whitesides, G.M. (2010). Cofabrication: a strategy for building multicomponent microsystems. Acc. Chem. Res. 43, 518–528.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Sobradillo, P., Pozo, F., and Agusti, A. (2011). P4 medicine: the future around the corner. Arch. Bronconeumol. 47, 35–40.PubMedGoogle Scholar
  68. Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., et al. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 11, 678–682.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Thorsen, T., Maerkl, S.J., and Quake, S.R. (2002). Microfluidic large-scale integration. Science 298, 580–584.PubMedCrossRefGoogle Scholar
  70. Tsui, J.H., Lee, W., Pun, S.H., Kim, J., and Kim, D.H. (2013). Micro-fluidics-assisted in vitro drug screening and carrier production. Adv. Drug Deliv. Rev. [Epub ahead of print]Google Scholar
  71. Wagner, E. (2007). Programmed drug delivery: nanosystems for tumor targeting. Exper. Opin. Biol. Ther. 7, 587–593.CrossRefGoogle Scholar
  72. Yang, X., Stein, E.W., Ashkenazi, S., and Wang, L.V. (2009). Nanoparticles for photoacoustic imaging. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 1, 360–368.CrossRefGoogle Scholar
  73. Yang, S.Y., Kim, E.S., Jeon, G., Choi, K.Y., and Kim, J.K. (2013). Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1689–1695.PubMedCrossRefGoogle Scholar
  74. Zhang, J., Lang, H.P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Guntgerodt, H.J., Hegner, M., and Gerber, C. (2006a). Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1, 214–220.PubMedCrossRefGoogle Scholar
  75. Zhang, Y., So, M.K., and Rao, J. (2006b). Protease-modulated cellular uptake of quantum dots. Nano Lett. 6, 1988–1992.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Zhang, L.W., and Monteiro-Riviere, N.A. (2009). Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110, 138–155.PubMedCrossRefGoogle Scholar
  77. Zhang, Y., Tang, Y., Hsieh, Y.H., Hsu, C.Y., Xi, J., Lin, K.J., and Jiang, X. (2012). Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics. Lab Chip 12, 3012–3015.PubMedCrossRefGoogle Scholar
  78. Zhang, Z., Wang, J., and Chen, C. (2013). Gold nanorods based platforms for light-mediated theranostics. Theranostics 3, 223–238.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Zong, C., Lu, S., Chapman, A.R., and Xie, X.S. (2012). Genomewide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Eung-Sam Kim
    • 1
    • 2
  • Eun Hyun Ahn
    • 3
    • 4
  • Euiheon Chung
    • 2
    • 5
  • Deok-Ho Kim
    • 1
    • 4
    • 6
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Medical System EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
  3. 3.Department of Pathology, School of MedicineUniversity of WashingtonSeattleUSA
  4. 4.Institute of Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleUSA
  5. 5.School of MechatronicsGwangju Institute of Science and TechnologyGwangjuKorea
  6. 6.Center for Cardiovascular BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations