Skip to main content
Log in

Regulation of SIRT1 by MicroRNAs

  • Minireview
  • Published:
Molecules and Cells

Abstract

Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that connects cellular energy levels to homeostatic responses by deacetylating and modulating the activities of many transcriptional regulators. Discovered as a longevity protein in yeast, the mammalian SIRT1 has been intensively studied because of its great potential as a therapeutic target to benefit human health by preventing and improving many age-related diseases. There has been, therefore, substantial interest in developing agents that upregulate SIRT1 expression and activity. SIRT1 is regulated at multiple levels, including post-transcriptionally by microRNAs (miRs), powerful regulators of diverse biological pathways. Here we discuss how expression and activity of SIRT1 and other sirtuins are inhibited by miRs and further discuss the therapeutic potential of targeting miRs for age-related diseases that involve SIRT1 dysfunction, focusing on obesityrelated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksoy, P., White, T.A., Thompson, M., and Chini, E.N. (2006). Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 345, 1386–1392.

    Article  PubMed  CAS  Google Scholar 

  • Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R.H., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Barber, M.F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., Tennen, R.I., Paredes, S., Young, N.L., Chen, K., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114–118.

    PubMed  CAS  Google Scholar 

  • Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A., and Van Obberghen, E. (2007). MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J. Biol. Chem. 282, 19575–19588.

    Article  PubMed  CAS  Google Scholar 

  • Belenky, P., Bogan, K.L., and Brenner, C. (2007). NAD+ metabolism in health and disease. Trends Biochem. Sci. 32, 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., Greco, V., Maggiolini, M., Feraco, E., Mari, V., et al. (2005). A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85, 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Boon, R.A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., Kaluza, D., Tréguer, K., Carmona, G., Bonauer, A., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Canto, C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M. H., Cen, Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose, P., et al. (2012). The NAD(+) precursor nicotinamide ribosideenhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847.

    Article  PubMed  CAS  Google Scholar 

  • Cermelli, S., Ruggieri, A., Marrero, J.A., Ioannou, G.N., and Beretta, L. (2011). Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6, e23937.

    Article  PubMed  CAS  Google Scholar 

  • Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., and Feldmann, G., (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Chau, M.D., Gao, J., Yang, Q., Wu, Z., and Gromada, J. (2010). Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc. Natl. Acad. Sci. USA 107, 12553–12558.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, O., Puri, P., Eicken, C., Contos, M.J., Mirshahi, F., Maher, J.W., Kellum, J.M., Min, H., Luketic, V.A., and Sanyal, A.J. (2008). Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48, 1810–1820.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S.E., Fu, T., Seok, S., Kim, D.H., Yu, E., Lee, KW., Kang, Y., Li, X., Kemper, B., and Kemper, J.K. (2013). Elevated micro-RNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell [Epub ahead of print].

    Google Scholar 

  • Dávalos, A., Goedeke, L., Smibert, P., Ramírez, C.M., Warrier, N.P., Andreo, U., Cirera-Salinas, D., Rayner, K., Suresh, U., Pastor Pareja, J.C., et al. (2011). miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA 108, 9232–9237.

    Article  PubMed  Google Scholar 

  • Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H., et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809.

    Article  PubMed  CAS  Google Scholar 

  • Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T., Deng, C.X., and Mostoslavsky, R. (2009). Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., and Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  • Fu, T., Choi, S.E., Kim, D.H., Seok, S., Suino-Powell, K.M., Xu, H.E., and Kemper, J.K. (2012). Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor beta-Klotho. Proc. Natl. Acad. Sci. USA 109, 16137–16142.

    Article  PubMed  CAS  Google Scholar 

  • Guarente, L. (2006). Sirtuins as potential targets for metabolic syndrome. Nature 444, 868–874.

    Article  PubMed  CAS  Google Scholar 

  • Guarente, L. (2011). Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Gurd, B.J., Holloway, G.P., Yoshida, Y., and Bonen, A. (2012). In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 61, 733–741.

    Article  PubMed  CAS  Google Scholar 

  • Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295.

    Article  PubMed  CAS  Google Scholar 

  • He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., et al. (2007). A micro-RNA component of the p53 tumour suppressor network. Nature 447, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  • Hobert, O. (2008). Gene regulation by transcription factors and microRNAs. Science 319, 1785–1786.

    Article  PubMed  CAS  Google Scholar 

  • Houtkooper, R.H., Cantó, C., Wanders, R.J., and Auwerx, J. (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223.

    Article  PubMed  CAS  Google Scholar 

  • Houtkooper, R.H., Pirinen, E., and Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238.

    PubMed  CAS  Google Scholar 

  • Imai, S., and Kiess, W. (2009). Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes. Front Biosci. 14, 2983–95.

    Article  CAS  Google Scholar 

  • Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NADdependent histone deacetylase. Nature 403, 795–800.

    Article  PubMed  CAS  Google Scholar 

  • Iwahara, T., Bonasio, R., Narendra, V., and Reinberg, D. (2012). SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol. 32, 5022–5034.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., Yagi, S., and Yamakuchi, M. (2010). MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 398, 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Kemper, J.K., Xiao, Z., Ponugoti, B., Miao, J., Fang, S., Kanamaluru, D., Tsang, S., Wu, S., Chiang, C.M., and Veenstra, T.D. (2009). FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392–404.

    Article  PubMed  CAS  Google Scholar 

  • Kemper, J.K., Choi, S.E., and Kim, D.H. (2013). Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam. Horm. 91, 385–404.

    PubMed  CAS  Google Scholar 

  • Khanna, A., Muthusamy, S., Liang, R., Sarojini, H., and Wang, E. (2011). Gain of survival signaling by downregulation of three key miRNAs in brain of calorie-restricted mice. Aging 3, 223–236.

    PubMed  CAS  Google Scholar 

  • Kim, J.K., Noh, J.H., Jung, K.H., Eun, J.W., Bae, H.J., Kim, M.G., Chang, Y.G., Shen, Q., Park, W.S., Lee, J.Y., et al. (2013). Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 57, 1055–1067.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, Y.I., Kitamura, T., Kruse, J.P., Raum, J.C., Stein, R., Gu, W., and Accili, D. (2005). FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., Fang, F., and Chang, Y. (2010). Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5, e11707.

    Article  PubMed  Google Scholar 

  • Kota, J., Chivukula, R.R., O’Donnell, K.A., Wentzel, E.A., Montgomery, C.L., Hwang, H.W., Chang, T.C., Vivekanandan, P., Torbenson, M., Clark, K.R., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., and Kemper, J.K. (2010). Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging 2, 527–534.

    PubMed  CAS  Google Scholar 

  • Lee, J., Padhye, A., Sharma, A., Song, G., Miao, J., Mo, Y.Y., Wang, L., and Kemper, J.K. (2010). A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285, 12604–126011.

    Article  PubMed  CAS  Google Scholar 

  • Leung, A.K., Vyas, S., Rood, J.E., Bhutkar, A., Sharp, P.A., and Chang, P. (2011). Poly(ADP-Ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Chen, X., Zhang, H., Liang, X., Xiang, Y., Yu, C., Zen, K., Li, Y., and Zhang, C.Y. (2009). Differential expression of micro-RNAs in mouse liver under aberrant energy metabolic status. J. Lipid Res. 50, 1756–1765.

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Muthusamy, S., Liang, R., Sarojini, H., and Wang, E. (2011). Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech. Ageing Dev. 132, 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., Patrawala, L., Yan, H., Jeter, C., Honorio, S., et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 17, 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.J., Kennerdell, J.R., Zhu, Y., Wang, L.S., and Bonini, N.M. (2012). The micro-RNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482, 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Lovis, P., Roggli, E., Laybutt, D.R., Gattesco, S., Yang, J.Y., Widmann, C., Abderrahmani, A., and Regazzi, R. (2008). Alterations in microRNA expression contribute tofatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57, 2728–2736.

    Article  PubMed  CAS  Google Scholar 

  • Menghini, R., Casagrande, V., Cardellini, M., Martelli, E., Terrinoni, A., Amati, F., Vasa-Nicotera, M., Ippoliti, A., Novelli, G., Melino, G., et al. (2009). MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120, 1524–1532.

    Article  PubMed  CAS  Google Scholar 

  • Mostoslavsky, R., Chua, K.F., Lombard, D.B., Pang, W.W., Fischer, M.R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M.M., et al. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329.

    Article  PubMed  CAS  Google Scholar 

  • Najafi-Shoushtari, S.H., Kristo, F., Li, Y., Shioda, T., Cohen, D.E., Gerszten, R.E., and Naar, A.M. (2010). MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Lomb, D.J., Haigis, M.C., and Guarente, L. (2009). SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560–570.

    Article  PubMed  CAS  Google Scholar 

  • Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., and Sassone-Corsi, P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657.

    Article  PubMed  CAS  Google Scholar 

  • Neilson, J.R., and Sharp, P.A. (2008). Small RNA regulators of gene expression. Cell 134, 899–902.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, F.J., Moreno-Navarrete, J.M., Pardo, G., Sabater, M., Hummel, M., Ferrer, A., Rodriguez-Hermosa, J.I., Ruiz, B., Ricart, W., Peral, B., et al. (2010). MiRNA expression profi le of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5, e9022.

    Article  PubMed  Google Scholar 

  • Pillai, J.B., Isbatan, A., Imai, S., and Gupta, M.P. (2005). Poly(ADPribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280, 43121–43130.

    Article  PubMed  CAS  Google Scholar 

  • Pirinen, E., Lo, Sasso, G., and Auwerx, J. (2012). Mitochondrial sirtuins and metabolic homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 26, 759–770.

    Article  PubMed  CAS  Google Scholar 

  • Ponugoti, B., Kim, D.H., Xiao, Z., Smith, Z., Miao, J., Zang, M., Wu, S.Y., Chiang, C.M., Veenstra, T.D., and Kemper, J.K. (2010), SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285, 33959–33970.

    Article  PubMed  CAS  Google Scholar 

  • Pramanik, D., Campbell, N.R., Karikari, C., Chivukula, R., Kent, O. A., Mendell, J.T., and Maitra, A. (2011). Restitution of tumor sup-pressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480.

    Article  PubMed  CAS  Google Scholar 

  • Qiang, L., Wang, L., Kon, N., Zhao, W., Lee, S., Zhang, Y., Rosenbaum, M., Zhao, Y., Gu, W., Farmer, S.R., et al. (2012). Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PparΓ. Cell 150, 620–632.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, D., Roy, U., Garg, S., Ghosh, S., Pathak, S., and Kolthur-Seetharam, U. (2011). Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 278, 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey, K.M., Yoshino, J., Brace, C.S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H.K., Chong, J.L., Buhr, E.D., Lee, C., et al. (2009). Circadian clock feedback cycle through NAMPTmediated NAD+ biosynthesis. Science 324, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Rayner, K.J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M.L., Tamehiro, N, Fisher, E.A., Moore, K.J., and Fernandez-Hernando, C. (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, J.T., and Puigserver, P. (2007). Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. USA 104, 12861–12866.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Rottiers, V., Najafi-Shoushtari, S.H., Kristo, F., Gurumurthy, S., Zhong, L., Li, Y., Cohen, D.E., Gerszten, R.E., Bardeesy, N., Mostoslavsky, R., et al. (2011). MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb. Symp. Quant. Biol. 76, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G., Dato, S., Altomare, K., Bellizzi, D., Garasto, S., Greco, V., Passarino, G., Feraco, E., Mari, V., Barbi, C., et al. (2003). Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp. Gerontol. 38, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, A., Diecke, S., Zhang, W.Y., Lan, F., He, C., Mordwinkin, N.M., Chua, K.F., and Wu, J.C. (2013). The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 288, 18439–18447.

    Article  PubMed  CAS  Google Scholar 

  • Strum, J.C., Johnson, J.H., Ward, J., Xie, H., Field, J., Hester, A., Alford, A., and Waters, K.M. (2009). MicroRNA 132 regulates nutritional stressinduced chemokine production through repression of SirT1. Mol. Endocrinol. 23, 1876–1884.

    Article  PubMed  CAS  Google Scholar 

  • Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M.H., and Stoffel, M. (2011). MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T., and Bober, E. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703–710.

    Article  PubMed  CAS  Google Scholar 

  • Van Rooji, E. (2011). The art of microRNA research. Circ. Res. 108, 219–234.

    Article  Google Scholar 

  • Walker, A.K., Yang, F., Jiang, K., Ji, J.Y., Watts, J.L., Purushotham, A., Boss, O., Hirsch, M.L., Ribich, S., Smith, J.J., et al. (2010). Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403–1417.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., Lim, B., and Lodish, H.F. (2009). MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58, 1050–1057.

    Article  PubMed  CAS  Google Scholar 

  • Yamakuchi, M., Ferlito, M., and Lowenstein, C.J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 105, 13421–13426.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H., Schoonjans, K., and Auwerx, J. (2007). Sirtuin functions in health and disease Mol. Endocrinol. 21, 1745–1755.

    CAS  Google Scholar 

  • Yang, J.S., and Lai, E.C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903.

    Article  PubMed  CAS  Google Scholar 

  • Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536.

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki, T., Milne, J.C., Imamura, T., Schenk, S., Sonoda, N., Babendure, J.L., Lu, J.C., Smith, J.J., Jirousek, M.R., and Olefsky, J.M. (2009). sirT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 29, 1363–1374.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., Tong, J., and Huang, G. (2013). Nicotinamide phosphoribosyl transferase (Nampt) is a target of MicroRNA-26b in colorectal cancer cells. PLoS One 8, e69963.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, B., Li, C., Qi, W., Zhang, Y., Zhang, F., Wu, J.X., Hu, Y.N., Wu, D.M., Liu, Y., Yan, T.T., et al. (2012). Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 55, 2032–2043.

    Article  PubMed  CAS  Google Scholar 

  • Zovoilis, A., Agbemenyah, H.Y., Agis-Balboa, R.C., Stilling, R.M., Edbauer, D., Rao, P., Farinelli, L., Delalle, I., Schmitt, A., Falkai, P., et al. (2011). microRNA-34c is a novel target to treat dementias. EMBO J. 30, 4299–4308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsook Kim Kemper.

About this article

Cite this article

Choi, SE., Kemper, J.K. Regulation of SIRT1 by MicroRNAs. Mol Cells 36, 385–392 (2013). https://doi.org/10.1007/s10059-013-0297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0297-1

Keywords

Navigation