Molecules and Cells

, Volume 36, Issue 6, pp 577–582 | Cite as

Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells

  • Taeyong Kim
  • Yung Ho Kahng
  • Takhee Lee
  • Kwanghee Lee
  • Do Han Kim
Research Article


Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electrogenic cardiomyocytes, suggesting their useful applications for future cell biology studies.


calcium transients chemical vapor deposition cytotoxicity excitable cells graphene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, K., Hunter, I., and Engel, J. (1990). Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 4, 148–160.PubMedGoogle Scholar
  2. Bird, S.D., Doevendans, P.A., van Rooijen, M.A., Brutel de la Riviere, A., Hassink, R.J., Passier, R., and Mummery, C.L. (2003). The human adult cardiomyocyte phenotype. Cardiovasc. Res. 58, 423–434.PubMedCrossRefGoogle Scholar
  3. Bitounis, D., Ali-Boucetta, H., Hong, B.H., Min, D.H., and Kostarelos, K. (2013). Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25, 2258–2268.PubMedCrossRefGoogle Scholar
  4. Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y., and Lieber, C.M. (2010) Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Duch, M.C., Budinger, G.R., Liang, Y.T., Soberanes, S., Urich, D., Chiarella, S.E., Campochiaro, L.A., Gonzalez, A., Chandel, N.S., Hersam, M.C., et al. (2011). Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11, 5201–5207.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Freire, E., Gomes, F.C., Linden, R., Neto, V.M., and Coelho-Sampaio, T. (2002). Structure of laminin substrate modulates cellular signaling for neuritogenesis. J. Cell Sci. 115, 4867–4876.PubMedCrossRefGoogle Scholar
  7. Geim, A.K. (2009). Graphene: status and prospects. Science 324, 1530–1534.PubMedCrossRefGoogle Scholar
  8. Geim, A.K., and Novoselov, K.S. (2007). The rise of graphene. Nat. Mater. 6, 183–191.PubMedCrossRefGoogle Scholar
  9. Gregory, K.N., Ginsburg, K.S., Bodi, I., Hahn, H., Marreez, Y.M., Song, Q., Padmanabhan, P.A., Mitton, B.A., Waggoner, J.R., Del Monte, F., et al. (2006). Histidine-rich Ca binding protein: a regulator of sarcoplasmic reticulum calcium sequestration and cardiac function. J. Mol. Cell Cardiol. 40, 653–665.PubMedCrossRefGoogle Scholar
  10. Hess, L.H., Jansen, M., Maybeck, V., Hauf, M.V., Seifert, M., Stutzmann, M., Sharp, I.D., Offenhausser, A., and Garrido, J.A. (2011). Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049, 4968.PubMedCrossRefGoogle Scholar
  11. Jang, H., Ryoo, S.R., Lee, M.J., Han, S.W., and Min, D.H. (2013). A new helicase assay based on graphene oxide for anti-viral drug development. Mol. Cells 35, 269–273.PubMedCrossRefGoogle Scholar
  12. Jo, G., Choe, M., Cho, C.Y., Kim, J.H., Park, W., Lee, S., Hong, W.K., Kim, T.W., Park, S.J., Hong, B.H., et al. (2010a). Largescale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 21, 175201.PubMedCrossRefGoogle Scholar
  13. Jo, G., Na, S.-I., Oh, S.-H., Lee, S., Kim, T.-S., Wang, G., Choe, M., Park, W., Yoon, J., Kim, D.-Y., et al. (2010b). Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl. Phys. Lett. 97, 213301.CrossRefGoogle Scholar
  14. Kahng, Y.H., Lee, S., Choe, M., Jo, G., Park, W., Yoon, J., Hong, W.K., Cho, C.H., Lee, B.H., and Lee, T. (2011). A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Nanotechnology 22, 045706.PubMedCrossRefGoogle Scholar
  15. Kalbacova, M., Broz, A., Kong, J., and Kalbac, M. (2010). Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48, 4323–4329.CrossRefGoogle Scholar
  16. Kwon, S.J., and Kim, D.H. (2009). Characterization of junctate-SERCA2a interaction in murine cardiomyocyte. Biochem. Biophys. Res. Commun. 390, 1389–1394.PubMedCrossRefGoogle Scholar
  17. Lee, S., Jo, G., Kang, S.J., Wang, G., Choe, M., Park, W., Kim, D.Y., Kahng, Y.H., and Lee, T. (2011). Enhanced charge injection in pentacene field-effect transistors with graphene electrodes. Adv. Mater. 23, 100–105.PubMedCrossRefGoogle Scholar
  18. Li, N., Zhang, X., Song, Q., Su, R., Zhang, Q., Kong, T., Liu, L., Jin, G., Tang, M., and Cheng, G. (2011). The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32, 9374–9382.PubMedCrossRefGoogle Scholar
  19. Mao, X., Su, H., Tian, D., Li, H., and Yang, R. (2013). Bipyrenefunctionalized graphene as a “turn-on” fluorescence sensor for manganese(II) ions in living cells. ACS Appl. Mater. Interfaces 5, 592–597.PubMedCrossRefGoogle Scholar
  20. Oh, J.G., Jeong, D., Cha, H., Kim, J.M., Lifirsu, E., Kim, J., Yang, D.K., Park, C.S., Kho, C., Park, S., et al. (2012). PICOT increases cardiac contractility by inhibiting PKCzeta activity. J. Mol. Cell Cardiol. 53, 53–63.PubMedCrossRefGoogle Scholar
  21. Park, C.S., Chen, S., Lee, H., Cha, H., Oh, J.G., Hong, S., Han, P., Ginsburg, K.S., Jin, S., Park, I., et al. (2013). Targeted ablation of the histidine-rich Ca(2+)-binding protein (HRC) gene is associated with abnormal SR Ca(2+)-cycling and severe pathology under pressure-overload stress. Basic Res. Cardiol. 108, 344.PubMedCrossRefGoogle Scholar
  22. Ryoo, S.R., Kim, Y.K., Kim, M.H., and Min, D.H. (2010). Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4, 6587–6598.PubMedCrossRefGoogle Scholar
  23. Sahni, D., Jea, A., Mata, J.A., Marcano, D.C., Sivaganesan, A., Berlin, J.M., Tatsui, C.E., Sun, Z., Luerssen, T.G., Meng, S., et al. (2013). Biocompatibility of pristine graphene for neuronal interface. J. Neurosurg. Pediatr. 11, 575–583.PubMedCrossRefGoogle Scholar
  24. Yamamoto, T., Yano, M., Kohno, M., Hisaoka, T., Ono, K., Tanigawa, T., Saiki, Y., Hisamatsu, Y., Ohkusa, T., and Matsuzaki, M. (1999). Abnormal Ca2+ release from cardiac sarcoplasmic reticulum in tachycardia-induced heart failure. Cardiovasc. Res. 44, 146–155.PubMedCrossRefGoogle Scholar
  25. Yarnitzky, T., and Volk, T. (1995). Laminin is required for heart, somatic muscles, and gut development in the Drosophila embryo. Dev. Biol. 169, 609–618.PubMedCrossRefGoogle Scholar
  26. Yoon, J., Choi, S.C., Park, C.Y., Choi, J.H., Kim, Y.I., Shim, W.J., and Lim, D.S. (2008). Bone marrow-derived side population cells are capable of functional cardiomyogenic differentiation. Mol. Cells 25, 216–223.PubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  1. 1.School of Life Sciences and Systems Biology Research CenterGwangju Institute of Science and Technology (GIST)GwangjuKorea
  2. 2.Research Institute for Solar and Sustainable Energies (RISE)Gwangju Institute of Science and Technology (GIST)GwangjuKorea
  3. 3.Department of Physics and AstronomySeoul National UniversitySeoulKorea

Personalised recommendations