Skip to main content
Log in

Transcription factors Sp1 and Sp3 regulate expression of human ABCG2 gene and chemoresistance phenotype

  • Research Article
  • Published:
Molecules and Cells

Abstract

ABCG2 is a member of the ATP binding cassette (ABC) transmembrane proteins that plays an important role in stem cell biology and drug resistance of cancer cells. In this study, we investigated how expression of human ABCG2 gene is regulated in lung cancer A549 cells. Binding of Sp1 and Sp3 transcription factors to the ABCG2 promoter in vitro and in vivo was elucidated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ABCG2 promoter activity was impaired when Sp1 sites were mutated but was enhanced by overexpression of Sp1 or Sp3 proteins. Knockdown of Sp1 or Sp3 expression by short interfering RNA significantly decreased the expression of ABCG2 mRNA and protein, resulting in attenuated formation of the side population in A549 cells. In addition, Sp1 inhibition in vivo by mithramycin A suppressed the percentage of the side population fraction and sphere forming activities of A549 cells. Moreover, inhibiting Sp1- or Sp3-dependent ABCG2 expression caused chemosensitization to the anticancer drug cisplatin. Collectively, our results demonstrate that Sp1 and Sp3 transcription factors are the primary determinants for activating basal transcription of the ABCG2 gene and play an important role in maintaining the side population phenotype of lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allikmets, R., Schriml, L.M., Hutchinson, A., Romano-Spica, V., and Dean, M. (1998). A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58, 5337–5339.

    PubMed  CAS  Google Scholar 

  • Bailey-Dell, K.J., Hassel, B., Doyle, L.A., and Ross, D.D. (2001). Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim. Biophys. Acta 1520, 234–241.

    Article  PubMed  CAS  Google Scholar 

  • Bunting, K.D. (2002). ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.J., Huang, W.C., Wei, Y.L., Hsu, S.C., Yuan, P., Lin, H.Y., Wistuba, II, Lee, J.J., Yen, C.J., Su, W.C., et al. (2011). Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PLoS One 6, e21428.

    Article  PubMed  CAS  Google Scholar 

  • Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Ann. Rev. Med. 58, 267–284.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, L.A., Yang, W., Abruzzo, L.V., Krogmann, T., Gao, Y., Rishi, A.K., and Ross, D.D. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95, 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  • Ee, P.L., Kamalakaran, S., Tonetti, D., He, X., Ross, D.D., and Beck, W.T. (2004). Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res. 64, 1247–1251.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, B., Frei, C., Moura, U., Stahel, R., and Felley-Bosco, E. (2012). Inhibition of phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy. Lung Cancer 78, 23–29.

    Article  PubMed  Google Scholar 

  • Goodell, M.A., McKinney-Freeman, S., and Camargo, F.D. (2005). Isolation and characterization of side population cells. Methods Mol. Biol. 290, 343–352.

    PubMed  Google Scholar 

  • Hamada, S., Satoh, K., Hirota, M., Kanno, A., Umino, J., Ito, H., Masamune, A., Kikuta, K., Kume, K., and Shimosegawa, T. (2012). The homeobox gene MSX2 determines chemosensitivity of pancreatic cancer cells via the regulation of transporter gene ABCG2. J. Cell. Physiol. 227, 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T.W., Gobel, U., Goodell, M.A., and Brenner, M.K. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. USA 101, 14228–14233.

    Article  PubMed  CAS  Google Scholar 

  • Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827–4833.

    Article  PubMed  CAS  Google Scholar 

  • Kage, K., Tsukahara, S., Sugiyama, T., Asada, S., Ishikawa, E., Tsuruo, T., and Sugimoto, Y. (2002). Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int. J. Cancer 97, 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy, P., Ross, D.D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K.E., Sarkadi, B., Sorrentino, B.P., and Schuetz, J.D. (2004). The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J. Biol. Chem. 279, 24218–24225.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.J., Park, K., Shin, M.H., Yang, W.J., Song, M.J., Park, J.H., Yong, T.S., Kim, E.K., and Kim, H.P. (2011). Accessible chromatin structure permits factors Sp1 and Sp3 to regulate human TGFBI gene expression. Biochem. Biophys. Res. Commun. 409, 222–228.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, K., Mickley, L., Litman, T., Zhan, Z., Robey, R., Cristensen, B., Brangi, M., Greenberger, L., Dean, M., Fojo, T., et al. (1999). Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59, 8–13.

    PubMed  CAS  Google Scholar 

  • Mo, W., and Zhang, J.T. (2012). Human ABCG2: structure, function, and its role in multidrug resistance. Int. J. Biochem. Mol. Biol. 3, 1–27.

    PubMed  CAS  Google Scholar 

  • Pan, Y.Z., Morris, M.E., and Yu, A.M. (2009). MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol. 75, 1374–1379.

    Article  PubMed  CAS  Google Scholar 

  • Safe, S., and Abdelrahim, M. (2005). Sp transcription factor family and its role in cancer. Eur. J. Cancer 41, 2438–2448.

    Article  PubMed  CAS  Google Scholar 

  • Scharenberg, C.W., Harkey, M.A., and Torok-Storb, B. (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Szatmari, I., Vamosi, G., Brazda, P., Balint, B.L., Benko, S., Szeles, L., Jeney, V., Ozvegy-Laczka, C., Szanto, A., Barta, E., et al. (2006). Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J. Biol. Chem. 281, 23812–23823.

    Article  PubMed  CAS  Google Scholar 

  • To, K.K., Zhan, Z., and Bates, S.E. (2006). Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol. Cell. Biol. 26, 8572–8585.

    Article  PubMed  CAS  Google Scholar 

  • To, K.K., Polgar, O., Huff, L.M., Morisaki, K., and Bates, S.E. (2008). Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol. Cancer Res. 6, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • To, K.K., Robey, R.W., Knutsen, T., Zhan, Z., Ried, T., and Bates, S.E. (2009). Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol. Cancer Ther. 8, 2959–2968.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J.G., Gump, J.L., Zhang, C., Cook, J.M., Marchion, D., Hazlehurst, L., Munster, P., Schell, M.J., Dalton, W.S., and Sullivan, D.M. (2006). ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 108, 3881–3889.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., Xue, X., Wei, J., An, Y., Yao, J., Cai, H., Wu, J., Dai, C., Qian, Z., Xu, Z., et al. (2010). hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Peng, H., Chen, Q., Liu, Y., Dong, Z., and Zhang, J.T. (2007). Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity. Cancer Res. 67, 4373–4381.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, C., Yang, M.C., Zins, E.J., Boehlke, C.S., and Huang, A.J. (2004). Identification of the promoter region of the human betaIGH3 gene. Mol. Vision 10, 351–360.

    CAS  Google Scholar 

  • Zhang, M., Mathur, A., Zhang, Y., Xi, S., Atay, S., Hong, J.A., Datrice, N., Upham, T., Kemp, C.D., Ripley, R.T., et al. (2012). Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res. 72, 4178–4192.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7, 1028–1034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung-Pyo Kim.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Yang, WJ., Song, MJ., Park, E.Y. et al. Transcription factors Sp1 and Sp3 regulate expression of human ABCG2 gene and chemoresistance phenotype. Mol Cells 36, 368–375 (2013). https://doi.org/10.1007/s10059-013-0191-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0191-x

Keywords

Navigation