Skip to main content
Log in

Regulation of HIF-1α activity by overexpression of thioredoxin is independent of thioredoxin reductase status

  • Research Article
  • Published:
Molecules and Cells

Abstract

Under hypoxic conditions, cells activate a transcriptional response mainly driven by hypoxia-inducible factors (HIFs). HIF-1α stabilization and activity are known to be regulated by thioredoxin 1 (Txn1), but how the thioredoxin system regulates the hypoxic response is unknown. By examining the effects of Txn1 overexpression on HIF-1α function in HeLa, HT-29, MCF-7 and EMT6 cell lines, we found that this oxidoreductase did not stabilize HIF-1α, yet could increase its activity. These effects were dependent on the redox function of Txn1. However, Txn1 deficiency did not affect HIF-1α hypoxic-stabilization and activity, and overexpression of thioredoxin reductase 1 (TR1), the natural Txn1 reductase, had no influence on HIF-1α activity. Moreover, overexpression of Txn1 in TR1 deficient HeLa and EMT6 cells was still able to increase HIF-1α hypoxic activity. These results indicate that Txn1 is not essential for HIF-1α hypoxic stabilization or activity, that its overexpression can increase HIF-1α hypoxic activity, and that this effect is observed regardless of TR1 status. Thus, regulation of HIF-1α by the thioredoxin system depends on the specific levels of this system’s major components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfranca, A., Gutierrez, M.D., Vara, A., Aragones, J., Vidal, F., and Landazuri, M.O. (2002). c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription. Mol. Cell. Biol. 22, 12–22.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Tejado, M., Alfranca, A., Aragones, J., Vara, A., Landazuri, M.O., and del Peso, L. (2002). Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia inducible factors by low oxygen tension. J. Biol. Chem. 28, 13508–13517.

    Article  Google Scholar 

  • Aragones, J., Jones, D.R., Martin, S., San Juan, M.A., Alfranca, A., Vidal, F., Vara, A., Merida, I., and Landazuri, M.O. (2001). Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J. Biol. Chem. 276, 10548–10555.

    Article  PubMed  CAS  Google Scholar 

  • Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340.

    Article  PubMed  CAS  Google Scholar 

  • Carrero, P., Okamoto, K., Coumailleau, P., O’Brien, S., Tanaka, H., and Poellinger, L. (2000). Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol. Cell. Biol. 20, 402–415.

    Article  PubMed  CAS  Google Scholar 

  • Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95, 11715–11720.

    Article  PubMed  CAS  Google Scholar 

  • Chua, Y.L., Dufour, E., Dassa, E.P., Rustin, P., Jacobs, H.T., Taylor, C.T., and Hagen, T. (2010). Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J. Biol. Chem. 285, 31277–31284.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, P.W., Freeman, T.L., Beitner-Johnson, D., and Millhorn, D. E. (1999a). EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J. Biol. Chem. 274, 33709–33713.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, P.W., Rust, R.T., Han, J., Millhorn, D.E., and Beitner-Johnson, D. (1999b). Selective activation of p38alpha and p38 gamma by hypoxia. Role in regulation of cyclin d1 by hypoxia in pc12 cells. J. Biol. Chem. 274, 23570–23576.

    Article  PubMed  CAS  Google Scholar 

  • Cormier-Regard, S., Nguyen, S.V., and Claycomb, W.C. (1998). Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J. Biol. Chem. 273, 17787–17792.

    Article  PubMed  CAS  Google Scholar 

  • Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., Poellinger, L., and Fujii-Kuriyama, Y. (1999). Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 18, 1905–1914.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613.

    PubMed  CAS  Google Scholar 

  • Garayoa, M., Martinez, A., Lee, S., Pio, R., An, W.G., Neckers, L., Trepel, J., Montuenga, L.M., Ryan, H., Johnson, R., et al. (2000). Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol. Endocrinol. 14, 848–862.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Roqueplo, A.P., Favier, J., Rustin, P., Mourad, J.J., Plouin, P.F., Corvol, P., Rotig, A., and Jeunemaitre, X. (2001). The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am. J. Hum. Genet. 69, 1186–1197.

    Article  PubMed  CAS  Google Scholar 

  • Hirota, K., and Semenza, G.L. (2001). Rac1 activity is required for the activation of hypoxia-inducible factor-1. J. Biol. Chem. 276, 21166–21172.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D.L., Salter, J.D., and Brookes, P.S. (2007). Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am. J. Physiol. Heart Circ. Physiol. 292, H101–108.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L.E., Arany, Z., Livingston, D.M., and Bunn, H.F. (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 271, 32253–32259.

    Article  PubMed  CAS  Google Scholar 

  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., White, M.F., and Bruick, R.K. (2002a). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471.

    Article  PubMed  CAS  Google Scholar 

  • Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., and Whitelaw, M.L. (2002b). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Mazure, N.M., Chen, E.Y., Laderoute, K.R., and Giaccia, A.J. (1997). Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras- transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322–3331.

    PubMed  CAS  Google Scholar 

  • Meyer, M., Schreck, R., and Baeuerle, P.A. (1993). H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12, 2005–2015.

    PubMed  CAS  Google Scholar 

  • Naranjo-Suarez, S., Carlson, B.A., Tsuji, P.A., Yoo, M.H., Gladyshev, V.N., and Hatfield, D.L. (2012). HIF-independent regulation of thioredoxin reductase 1 contributes to the high levels of reactive oxygen species induced by hypoxia. PLoS One 7, e30470.

    Article  PubMed  CAS  Google Scholar 

  • Richard, D.E., Berra, E., Gothie, E., Roux, D., and Pouyssegur, J. (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia- inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274, 32631–32637.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, H., Klein, M., Erdbrugger, W., Droge, W., and Schulze-Osthoff, K. (1994). Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc. Natl. Acad. Sci. USA 91, 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  • Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B., and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G.L., and Wang, G.L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454.

    PubMed  CAS  Google Scholar 

  • Srinivas, V., Leshchinsky, I., Sang, N., King, M.P., Minchenko, A., and Caro, J. (2001). Oxygen sensing and HIF-1 activation does not require an active mitochondria respiratory chain electron-transfer pathway. J. Biol. Chem. 276, 21995–21998.

    Article  PubMed  CAS  Google Scholar 

  • Tobe, R., Yoo, M.H., Fradejas, N., Carlson, B.A., Calvo, S., Gladyshev, V.N., and Hatfield, D.L. (2012). Thioredoxin reductase 1 deficiency enhances selenite toxicity in cancer cells via a thioredoxin-independent mechanism. Biochem. J. 445, 423–430.

    Article  PubMed  CAS  Google Scholar 

  • Turanov, A.A., Kehr, S., Marino, S.M., Yoo, M.H., Carlson, B.A., Hatfield, D.L., and Gladyshev, V.N. (2010). Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets. Biochem. J. 430, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, E.C., Metzen, E., Yeates, K.M., and Ratcliffe, P.J. (2001). Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98, 296–302.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, S.J., Bellamy, W.T., Briehl, M.M., and Powis, G. (2002). The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 62, 5089–5095.

    PubMed  CAS  Google Scholar 

  • Wenger, R.H., Stiehl, D.P., and Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, re12.

    PubMed  Google Scholar 

  • Yoo, M.H., Xu, X.M., Carlson, B.A., Gladyshev, V.N., and Hatfield, D.L. (2006). Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells. J. Biol. Chem. 281, 13005–13008.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., et al. (2009). Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M.M., Simons, J.W., and Semenza, G.L. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Damdimopoulos, A.E., Spyrou, G., and Brune, B. (2007). Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia-inducible factor-1alpha. J. Biol. Chem. 282, 7482–7490.

    Article  PubMed  CAS  Google Scholar 

  • Zundel, W., Schindler, C., Hass-Kogan, D., Koong, A., Kaper, F., Chen, E., Gottschalk, A.R., Ryan, H.E., Johnson, R.S., Jefferson, A.B., et al. (2000). Loss of PTEN facilitates HIF-1 mediated gene expression. Genes Dev. 14, 391–396.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolph L. Hatfield.

About this article

Cite this article

Naranjo-Suarez, S., Carlson, B.A., Tobe, R. et al. Regulation of HIF-1α activity by overexpression of thioredoxin is independent of thioredoxin reductase status. Mol Cells 36, 151–157 (2013). https://doi.org/10.1007/s10059-013-0121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0121-y

Keywords

Navigation