Skip to main content
Log in

Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia

  • Research Article
  • Published:
Molecules and Cells

Abstract

Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Rahim, M., Thatipamula, S., and Hossain, M.A. (2013). Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxicischemic neuronal injury. Neurobiol. Dis. 50, 59–68.

    Article  PubMed  Google Scholar 

  • Belmont, L.D., and Mitchison, T.J. (1996). Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Brito, D.A., and Rieder, C.L. (2009). The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil. Cytoskel. 66, 437–447.

    Article  CAS  Google Scholar 

  • Cassimeris, L. (1999). Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr. Opin. Cell Biol. 11, 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, J.Z., Milner, T.A., and Sung, C.H. (2001). Subunit heterogeneity of cytoplasmic dynein: differential expression of 14 kDa dynein light chains in rat hippocampus. J. Neurosci. 21, 5501–5512.

    PubMed  CAS  Google Scholar 

  • Chuang, J.Z., Yeh, T.Y., Bollati, F., Conde, C., Canavosio, F., Caceres, A., and Sung, C.H. (2005). The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell 9, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y.D., Xu, X., Dang, Y.M., Zhang, Y.M., Zhang, J.P., Hu, J.Y., Zhang, Q., Dai, X., Teng, M., Zhang, D.X., et al. (2011). MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1. PLoS One 6, e28052.

    Article  PubMed  CAS  Google Scholar 

  • Feng, P., Liang, C., Shin, Y.C., Xiaofei, E., Zhang, W., Gravel, R., Wu, T.T., Sun, R., Usherwood, E., and Jung, J.U. (2007). A novel inhibitory mechanism of mitochondrion-dependent apoptosis by a herpesviral protein. PLoS Pathog. 3, e174.

    Article  PubMed  Google Scholar 

  • Frezza, C., Zheng, L., Tennant, D.A., Papkovsky, D.B., Hedley, B.A., Kalna, G., Watson, D.G., and Gottlieb, E. (2011). Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One 6, e24411.

    Article  PubMed  CAS  Google Scholar 

  • Hein, S., Scheffold, T., and Schaper, J. (1995). Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J. Thorac. Cardiovasc. Surg. 110, 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J.Y., Chu, Z.G., Han, J., Dang, Y.M., Yan, H., Zhang, Q., Liang, G.P., and Huang, Y.S. (2010). The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol. Life Sci. 67, 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y.S., Yang, Z.C., Yan, B.G., Yang, J.M., Chen, F.M., Crowther, R.S., and Li, A. (1999). Pathogenesis of early cardiac myocyte damage after severe burns. J. Trauma 46, 428–432.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Li, Z., and Yang, Z. (2003). Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. Burns 29, 828–833.

    Article  PubMed  Google Scholar 

  • Kinnally, K.W., Peixoto, P.M., Ryu, S.Y., and Dejean, L.M. (2011a). Is mPTP the gatekeeper for necrosis, apoptosis, or both? Bba-Mol. Cell Res. 1813, 616–622.

    CAS  Google Scholar 

  • Kinnally, K.W., Peixoto, P.M., Ryu, S.Y., and Dejean, L.M. (2011b). Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim. Biophys. Acta 1813, 616–622.

    Article  PubMed  CAS  Google Scholar 

  • Liang, B., Kong, D., Liu, Y., Liang, N., He, M., Ma, S., and Liu, X. (2012). Autophagy inhibition plays the synergetic killing roles with radiation in the multi-drug resistant SKVCR ovarian cancer cells. Radiat. Oncol. 7, 213.

    Article  PubMed  Google Scholar 

  • Loos, B., Genade, S., Ellis, B., Lochner, A., and Engelbrecht, A.M. (2011). At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp. Cell Res. 317, 1437–1453.

    Article  PubMed  CAS  Google Scholar 

  • Makokha, M., Hare, M., Li, M., Hays, T., and Barbar, E. (2002). Interactions of cytoplasmic dynein light chains Tctex-1 and LC8 with the intermediate chain IC74. Biochemistry 41, 4302–4311.

    Article  PubMed  CAS  Google Scholar 

  • Maldonado, E.N., Patnaik, J., Mullins, M.R., and Lemasters, J.J. (2010). Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 70, 10192–10201.

    Article  PubMed  CAS  Google Scholar 

  • McCommis, K.S., and Baines, C.P. (2012). The role of VDAC in cell death: friend or foe? Biochim. Biophys. Acta 1818, 1444–1450.

    Article  PubMed  CAS  Google Scholar 

  • Mok, Y.K., Lo, K.W., and Zhang, M. (2001). Structure of Tctex-1 and its interaction with cytoplasmic dynein intermediate chain. J. Biol. Chem. 276, 14067–14074.

    PubMed  CAS  Google Scholar 

  • Nagano, F., Orita, S., Sasaki, T., Naito, A., Sakaguchi, G., Maeda, M., Watanabe, T., Kominami, E., Uchiyama, Y., and Takai, Y. (1998). Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. Implication in dynein-dependent vesicle transport. J. Biol. Chem. 273, 30065–30068.

    CAS  Google Scholar 

  • Palmer, K.J., MacCarthy-Morrogh, L., Smyllie, N., and Stephens, D.J. (2011). A role for Tctex-1 (DYNLT1) in controlling primary cilium length. Eur. J. Cell Biol 90, 865–871.

    Article  PubMed  CAS  Google Scholar 

  • Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999). Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J. 76, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Petronilli, V., Penzo, D., Scorrano, L., Bernardi, P., and Di Lisa, F. (2001). The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J. Biol. Chem. 276, 12030–12034.

    Article  PubMed  CAS  Google Scholar 

  • Putnam, A.J., Cunningham, J.J., Dennis, R.G., Linderman, J.J., and Mooney, D.J. (1998). Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J. Cell Sci. 111, 3379–3387.

    PubMed  CAS  Google Scholar 

  • Rogers, S.L., and Gelfand, V.I. (2000). Membrane trafficking, organelle transport, and the cytoskeleton. Curr. Opin. Cell Biol. 12, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Rostovtseva, T.K., and Bezrukov, S.M. (2012). VDAC inhibition by tubulin and its physiological implications. Biochim. Biophys. Acta 1818, 1526–1535.

    Article  PubMed  CAS  Google Scholar 

  • Rusanen, H., Majamaa, K., and Hassinen, I.E. (2000). Increased activities of antioxidant enzymes and decreased ATP concentration in cultured myoblasts with the 3243A—>G mutation in mitochondrial DNA. Biochim. Biophys. Acta 1500, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Hori, M., Kitakaze, M., Iwai, K., Takashima, S., Kurihara, H., Inoue, M., and Kamada, T. (1993). Reperfusion after brief ischemia disrupts the microtubule network in canine hearts. Circ. Res. 72, 361–375.

    Article  PubMed  CAS  Google Scholar 

  • Scharstuhl, A., Mutsaers, H.A., Pennings, S.W., Russel, F.G., and Wagener, F.A. (2009). Involvement of VDAC, Bax and ceramides in the efflux of AIF from mitochondria during curcumininduced apoptosis. PLoS One 4, e6688.

    Article  PubMed  Google Scholar 

  • Schwarzer, C., Barnikol-Watanabe, S., Thinnes, F.P., and Hilschmann, N. (2002). Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex 1 and the heat-shock protein PBP74. Int. J. Biochem. Cell Biol. 34, 1059–1070.

    Article  PubMed  CAS  Google Scholar 

  • Seko, Y., Takahashi, M., Tobe, K., Kadowaki, T., and Yazaki, Y. (1997). Hypoxia and hypoxia/reoxygenation activate p65(PAK), p38mi-togen-activated protein kinase (MAPK), and stressactivated protein kinase (SAPK) in cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun. 239, 840–844.

    Article  PubMed  CAS  Google Scholar 

  • Sheldon, K.L., Maldonado, E.N., Lemasters, J.J., Rostovtseva, T.K., and Bezrukov, S.M. (2011). Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One 6, e25539.

    Article  PubMed  CAS  Google Scholar 

  • Song, Y., Benison, G., Nyarko, A., Hays, T.S., and Barbar, E. (2007). Potential role for phosphorylation in differential regulation of the assembly of dynein light chains. J. Biol. Chem. 282, 17272–17279.

    Article  PubMed  CAS  Google Scholar 

  • Song, H.P., Zhang, L., Dang, Y.M., Yan, H., Chu, Z.G., and Huang, Y.S. (2010). The phosphatidylinositol 3-kinase-Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function. Clin. Exp. Pharmacol. Physiol. 37, 598–604.

    Article  PubMed  CAS  Google Scholar 

  • Stavrovskaya, I.G., and Kristal, B.S. (2005). The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic. Biol. Med. 38, 687–697.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, A., Mishina, Y., Miyaishi, O., Kojima, E., Hasegawa, T., and Isobe, K. (2003). Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat. Genet. 33, 172–176.

    Article  PubMed  CAS  Google Scholar 

  • Teng, M., Dang, Y.M., Zhang, J.P., Zhang, Q., Fang, Y.D., Ren, J., and Huang, Y.S. (2010). Microtubular stability affects cardiomyocyte glycolysis by HIF-1alpha expression and endonuclear aggregation during early stages of hypoxia. Am. J. Physiol. Heart Circ. Physiol. 298, H1919–1931.

    Article  PubMed  CAS  Google Scholar 

  • Tong, D.L., Zhang, D.X., Xiang, F., Teng, M., Jiang, X.P., Hou, J.M., Zhang, Q., and Huang, Y.S. (2012). Nicotinamide pretreatment protects cardiomyocytes against hypoxia-induced cell death by improving mitochondrial stress. Pharmacology 90, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Vandroux, D., Schaeffer, C., Tissier, C., Lalande, A., Bes, S., Rochette, L., and Athias, P. (2004). Microtubule alteration is an early cellular reaction to the metabolic challenge in ischemic cardiomyocytes. Mol. Cell. Biochem. 258, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Wan, X., O’Quinn, R.P., Pierce, H.L., Joglekar, A.P., Gall, W.E., DeLuca, J.G., Carroll, C.W., Liu, S.T., Yen, T.J., McEwen, B.F., et al. (2009). Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Zhang, B.Q., Ruan, J., Luo, Z.H., Zhang, J.P., Xiao, R., Lei, Z.Y., Hu, J.Y., Chen, Y.S., and Huang, Y.S. (2012). Shaking stress aggravates burn-induced cardiovascular and renal disturbances in a rabbit model. Burns 39, 760–766.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.C., Xie, H., and Hendrickson, W.A. (2005). Crystal structure of dynein light chain TcTex-1. J. Biol. Chem. 280, 21981–21986.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, T.Y., Peretti, D., Chuang, J.Z., Rodriguez-Boulan, E., and Sung, C.H. (2006). Regulatory dissociation of Tctex-1 light chain from dynein complex is essential for the apical delivery of rhodopsin. Traffic 7, 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  • Zang, Q., Maass, D.L., Tsai, S.J., and Horton, J.W. (2007). Cardiac mitochondrial damage and inflammation responses in sepsis. Surg. Infect. 8, 41–54.

    Article  Google Scholar 

  • Zhdanov, A.V., Dmitriev, R.I., and Papkovsky, D.B. (2011). Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria. Cell. Mol. Life Sci. 68, 903–917.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-ci Zhu or Yue-sheng Huang.

About this article

Cite this article

Xu, X., Zhang, Q., Hu, Jy. et al. Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia. Mol Cells 36, 322–332 (2013). https://doi.org/10.1007/s10059-013-0114-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0114-x

Keywords

Navigation