Skip to main content
Log in

The effects of adenoviral transfection of the keratinocyte growth factor gene on epidermal stem cells: An in vitro study

  • Research Article
  • Published:
Molecules and Cells

Abstract

Epidermal stem cells (ESCs) are characterized as slowcycling, multi-potent, and self-renewing cells that not only maintain somatic homeostasis but also participate in tissue regeneration and repair. To examine the feasibility of adenoviral vector-mediated keratinocyte growth factor (KGF) gene transfer into in vitro-expanded ESCs, ESCs were isolated from samples of human skin, cultured in vitro, and then transfected with recombinant adenovirus (Ad) carrying the human KGF gene (AdKGF) or green fluorescent protein gene (AdGFP). The effects of KGF gene transfer on cell proliferation, cell cycle arrest, cell surface antigen phenotype, and β-catenin expression were investigated. Compared to ESCs transfected with AdGFP, AdKGFtransfected ESCs grew well, maintained a high proliferative capacity in keratinocyte serum-free medium, and expressed high levels of β-catenin. AdKGF infection increased the number of ESCs in the G0/G1 phase and promoted ESCs entry into the G2/M phase, but had no effect on cell surface antigen phenotype (CD49f+/CD71). The results suggest that KGF gene transfer can stimulate ESCs to grow and undergo cell division, which can be applied to enhance cutaneous wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreadis, S.T., Hamoen, K.E., Yarmush, M.L., and Morgan, J.R. (2001). Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J. 15, 898–906.

    Article  PubMed  CAS  Google Scholar 

  • Auf dem Keller, U., Krampert, M., Kümin, A, Braun, S., and Werner S. (2004). Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur. J. Cell Biol. 83, 607–612.

    Article  Google Scholar 

  • Bao, S., Wang, Y., Sweeney, P., Chaudhuri, A., Doseff, A.I., Marsh, C.B., and Knoell, D.L. (2005). Keratinocyte growth factor induces Akt kinase activity and inhibits Fas-mediated apoptosis in A549 lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 288, 36–42.

    Article  Google Scholar 

  • Barthel, R., and Aberdam, D. (2005). Epidermal stem cells. J. Eur. Acad. Dermatol. Venereol. 19, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Beer, H.D., Gassmann, M.G., Munz, B., Steiling, H., Engelhardt, F., Bleuel, K., and Werner, S. (2000). Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J. Invest. Dermatol. Symp. Proc. 5, 34–39.

    Article  CAS  Google Scholar 

  • Blanpain, C., and Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Branski, L.K., Pereira, C.T., Herndon, D.N., and Jeschke, M.G. (2007). Gene therapy in wound healing: present status and future directions. Gene Ther. 14, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Braun, S., Krampert, M., Bodó, E, Kümin, A., Born-Berclaz, C., Paus, R., and Werner, S. (2006). Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents. J. Cell Sci. 119, 4841–4849.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, S., Barsky, L., Driscoll, B., Weinberg, K., Anderson, K.D., and Warburton, D. (1998). Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. Am. J. Physiol. 274, 714–720.

    Google Scholar 

  • Charruyer, A., and Ghadially, R. (2009). Stem cells and tissueengineered skin. Skin Pharmacol. Physiol. 22, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Deters, A.M., Schröder, K.R., Smiatek, T., and Hensel, A. (2005). Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production. Planta Med. 71, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Dong, R., Liu, X., Liu, Y., Deng, Z., Nie, X., Wang, X., and Jin, Y. (2007). Enrichment of epidermal stem cells by rapid adherence and analysis of the reciprocal interaction of epidermal stem cells with neighboring cells using an organotypic system. Cell Biol. Int. 31, 733–740.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, S., Pellegrini, G., Mavilio, F., and De Luca, M. (2005). Gene therapy approaches for epidermolysis bullosa. Clin. Dermatol. 23, 430–436.

    Article  PubMed  Google Scholar 

  • Gambardella, L., and Barrandon Y. (2003). The multifaceted adult epidermal stem cell. Curr. Opin. Cell Biol. 15, 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Ghazizadeh, S., and Taichman, L.B. (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215–1222.

    Article  PubMed  CAS  Google Scholar 

  • Gnecchi, M., He, H., Liang, O.D., Melo, L.G, Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R.E., Ingwall, J.S., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11, 367–368.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, C.A., Prockop, D.J., and Spees, J.L. (2005). Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp. Cell Res. 306, 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001). Beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R.J., and Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  • Janes, S.M., Lowell, S., and Hutter, C. (2002). Epidermal stem cells. J. Pathol. 197, 479–491.

    Article  PubMed  Google Scholar 

  • Keswani, S.G, Katz, A.B., Lim, F.Y., Zoltick, P., Radu, A., Alaee, D., Herlyn, M., and Crombleholme, T.M. (2004). Adenoviral mediated gene transfer of PDGF-B enhances wound healing in type I and type II diabetic wounds. Wound Repair Regen. 12, 497–504.

    Article  PubMed  Google Scholar 

  • Kolodka, T.M., Garlick, J.A., and Taichman, L.B. (1998). Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc. Natl. Acad. Sci. USA 95, 4356–4361.

    Article  PubMed  CAS  Google Scholar 

  • Liechty, K.W., Nesbit, M., Herlyn, M., Radu, A., Adzick, N.S., and Crombleholme, T.M. (1999). Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J. Invest. Dermatol. 11, 3375–3383.

    Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Lombaert, I.M., Brunsting, J.F., Wierenga, P.K., Kampinga, H.H., de Haan, G., and Coppes, R.P. (2008). Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool. Stem Cells 26, 2595–2601.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z., and Ghazizadeh, S. (2007). Loss of transgene following ex vivo gene transfer is associated with a dominant Th2 response: implications for cutaneous gene therapy. Mol. Ther. 15, 954–961.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., Deng, Z.L., Luo, X., Tang, N., Song, W.X., Chen, J., Sharff, K.A., Luu, H.H., Haydon, R.C., Kinzler, K.W., et al. (2007). A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, R., Omura, T., Yoshiyama, M., Hayashi, T., Inamoto, S., Koh, K.R., Ohta, K., Izumi, Y., Nakamura, Y., Akioka, K., et al. (2005). Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25, 1168–1173.

    Article  PubMed  CAS  Google Scholar 

  • Qiao, R., Yan, W., Clavijo, C., Mehrian-Shai, R., Zhong, Q., Kim, K. J., Ann, D., Crandall, E.D., and Borok, Z. (2008). Effects of KGF on alveolar epithelial cell transdifferentiation are mediated by JNK signaling. Am. J. Respir. Cell Mol. Biol. 38, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Roh, C., and Lyle, S. (2006). Cutaneous stem cells and wound healing. Pediatr. Res. 59, 100–103.

    Article  Google Scholar 

  • Tao, Q., Qiao, B., Lv, B., Zheng, C., Chen, Z., and Huang, H. (2009). p63 and its isoforms as markers of rat oral mucosa epidermal stem cells in vitro. Cell Biochem. Funct. 27, 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.T., Liu, P.Y., and Tang, J.B. (2006). PDGF gene therapy enhances expression of VEGF and bFGF genes and activates the NF-kappaB gene in signal pathways in ischemic flaps. Plast Reconstr. Surg. 117, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.M., Lo Celso, C., and Silva-Vargas, V. (2006). Epidermal stem cells: an update. Curr. Opin. Genet. Dev. 16, 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Yu, F.S., Yin, J., Xu, K., and Huang, J. (2010). Growth factors and corneal epithelial wound healing. Brain Res. Bull. 81, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Yun, K., Hoerl, B.J., and Scott, R.E. (1983). Efficient differentiation of proadipocyte stem cells on nonadherent surfaces: evidence for differentiation without DNA synthesis. J. Cell Physiol. 117, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, A.J., and Watt, F.M. (1999). Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285–2298.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Zhang.

About this article

Cite this article

Li, X., Liang, L., Zhao, P. et al. The effects of adenoviral transfection of the keratinocyte growth factor gene on epidermal stem cells: An in vitro study. Mol Cells 36, 316–321 (2013). https://doi.org/10.1007/s10059-013-0093-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0093-y

Keywords

Navigation