Skip to main content

Generation of demyelination models by targeted ablation of oligodendrocytes in the zebrafish CNS

Abstract

Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination.

This is a preview of subscription content, access via your institution.

References

  1. Asakawa, K., Suster, M.L., Mizusawa, K., Nagayoshi, S., Kotani, T., Urasaki, A., Kishimoto, Y., Hibi, M., and Kawakami, K. (2008). Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc. Natl. Acad. Sci. USA 105, 1255–1260.

    PubMed  Article  CAS  Google Scholar 

  2. Boggs, J.M. (2006). Myelin basic protein: a multifunctional protein. Cell Mol. Life Sci. 63, 1945–1961.

    PubMed  Article  CAS  Google Scholar 

  3. Carney, T.J., Dutton, K.A., Greenhill, E., Delfino-Machin, M., Dufourcq, P., Blader, P., and Kelsh, R.N. (2006). A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 133, 4619–4630.

    PubMed  Article  CAS  Google Scholar 

  4. Chung, A.Y., Kim, S., Kim, H., Bae, Y.K., and Park, H.C. (2011). Microarray screening for genes involved in oligodendrocyte differentiation in the zebrafish CNS. Exp. Neurobiol. 20, 85–91.

    PubMed  Article  Google Scholar 

  5. Curado, S., Anderson, R.M., Jungblut, B., Mumm, J., Schroeter, E., and Stainier, D.Y. (2007). Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev. Dyn. 236, 1025–1035.

    PubMed  Article  CAS  Google Scholar 

  6. Davison, J.M., Akitake, C.M., Goll, M.G., Rhee, J.M., Gosse, N., Baier, H., Halpern, M.E., Leach, S.D., and Parsons, M.J. (2007). Transactivation from Gal4-VP16 transgenic insertions for tissuespecific cell labeling and ablation in zebrafish. Dev. Biol. 304, 811–824.

    PubMed  Article  CAS  Google Scholar 

  7. Franklin, R.J., and Ffrench-Constant, C. (2008). Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci 9, 839–855.

    PubMed  Article  CAS  Google Scholar 

  8. Giuliodori, M.J., and DiCarlo, S.E. (2004). Myelinated vs. unmyelinated nerve conduction: a novel way of understanding the mechanisms. Adv. Physiol. Educ. 28, 80–81.

    PubMed  Article  Google Scholar 

  9. Jung, S.H., Kim, S., Chung, A.Y., Kim, H.T., So, J. H., Ryu, J., Park, H.C., and Kim, C. H. (2010). Visualization of myelination in GFP-transgenic zebrafish. Dev. Dyn. 239, 592–597.

    PubMed  Article  CAS  Google Scholar 

  10. Kaya, F., Mannioui, A., Chesneau, A., Sekizar, S., Maillard, E., Ballagny, C., Houel-Renault, L., Dupasquier, D., Bronchain, O., Holtzmann, I., et al. (2012). Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair. J. Neurosci. 32, 12885–12895.

    PubMed  Article  CAS  Google Scholar 

  11. Kim, S., Chung, A.Y., Kim, D., Kim, Y.S., Kim, H.S., Kwon, H.W., Huh, T.L., and Park, H.C. (2011). Tcf3 function is required for the inhibition of oligodendroglial fate specification in the spinal cord of zebrafish embryos. Mol. Cells 32, 383–388.

    PubMed  Article  CAS  Google Scholar 

  12. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.

    PubMed  Article  CAS  Google Scholar 

  13. Kotani, T., Nagayoshi, S., Urasaki, A., and Kawakami, K. (2006). Transposon-mediated gene trapping in zebrafish. Methods 39, 199–206.

    PubMed  Article  CAS  Google Scholar 

  14. Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., and Rowitch, D.H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connec tion. Cell 109, 75–86.

    PubMed  Article  CAS  Google Scholar 

  15. Matsushima, G.K., and Morell, P. (2001). The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 11, 107–116.

    PubMed  Article  CAS  Google Scholar 

  16. Merrill, J.E. (2009). In vitro and in vivo pharmacological models to assess demyelination and remyelination. Neuropsychopharmacology 34, 55–73.

    PubMed  Article  CAS  Google Scholar 

  17. Oluich, L.J., Stratton, J.A., Xing, Y.L., Ng, S.W., Cate, H.S., Sah, P., Windels, F., Kilpatrick, T.J., and Merson, T.D. (2012). Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J. Neurosci. 32, 8317–8330.

    PubMed  Article  CAS  Google Scholar 

  18. Park, H., Mehta, A., Richardson, J.S., and Appel, B. (2002a). olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356–368.

    PubMed  Article  CAS  Google Scholar 

  19. Park, H.C., Mehta, A., Richardson, J.S., and Appel, B. (2002b). olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356–368.

    PubMed  Article  CAS  Google Scholar 

  20. Park, H.C., Boyce, J., Shin, J., and Appel, B. (2005). Oligodendrocyte specification in zebrafish requires notch-regulated cyclin-dependent kinase inhibitor function. J. Neurosci. 25, 6836–6844.

    PubMed  Article  CAS  Google Scholar 

  21. Patel, J.R., and Klein, R.S. (2011). Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett. 585, 3730–3737.

    PubMed  Article  CAS  Google Scholar 

  22. Pisharath, H., Rhee, J.M., Swanson, M.A., Leach, S.D., and Parsons, M.J. (2007). Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech. Dev. 124, 218–229.

    PubMed  Article  CAS  Google Scholar 

  23. Rowitch, D.H. (2004). Glial specification in the vertebrate neural tube. Nat. Rev. Neurosc. 5, 409–419.

    Article  CAS  Google Scholar 

  24. Scherer, S.S., and Wrabetz, L. (2008). Molecular mechanisms of inherited demyelinating neuropathies. Glia 56, 1578–1589.

    PubMed  Article  Google Scholar 

  25. Zhou, Q., and Anderson, D.J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jin-Ho Seo or Hae-Chul Park.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Chung, AY., Kim, PS., Kim, S. et al. Generation of demyelination models by targeted ablation of oligodendrocytes in the zebrafish CNS. Mol Cells 36, 82–87 (2013). https://doi.org/10.1007/s10059-013-0087-9

Download citation

Keywords

  • CNS
  • demyelination
  • nfsB
  • oligodendrocyte
  • zebrafish