A new helicase assay based on graphene oxide for anti-viral drug development

Abstract

Recently, graphene oxide (GO), one of the carbon nanomaterials, has received much attention due to its unique physical and chemical properties and high potential in many research areas, including applications as a biosensor and drug delivery vehicle. Various GO-based biosensors have been developed, largely based on its surface adsorption properties for detecting biomolecules, such as nucleotides and peptides, and real-time monitoring of enzymatic reactions. In this review, we discuss recent advances in GO-based biosensors focusing on a novel assay platform for helicase activity, which was also employed in high-throughput screening to discover selective helicase inhibitors.

References

  1. Belon, A., and Frick, D.N. (2008). Monitoring helicase activity with molecular beacons. BioTechniques 45, 433–440.

    PubMed  CAS  Article  Google Scholar 

  2. Borowski, P., Niebuhr, A., Schmitz, H., Hosmane, R.S., Bretner, M., Siwecka, M.A., and Kulikowski, T. (2002). NTPase/helicase of Flaviviridae: inhibitors and inhibition of the enzyme. Acta Biochim. Pol. 49, 597–614.

    PubMed  CAS  Google Scholar 

  3. Chang, H.X., Tang, L.H., Wang, Y., Jiang, J., and Li, J. (2010). Graphene fluorescence resonance energy transfer aptasensor for thrombin detection. Anal. Chem. 82, 2341–2346.

    PubMed  CAS  Article  Google Scholar 

  4. Choo, Q.L., Kuo, G., Weiner, A.J., Overby, L.R., Bradley, D.W., and Houghton, M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362.

    PubMed  CAS  Article  Google Scholar 

  5. Earnshaw, D.L., Moore, K.J., Greenwood, C.J., Djaballah, H., Jurewics, A.J., Murray, J., and Pope, A.J. (1999). Time-resolved fluorescence energy transfer DNA helicase assays for high throughput screening. J. Biomol. Screen. 4, 239–248.

    PubMed  CAS  Article  Google Scholar 

  6. Farnik, H., and Zeuzem, S. (2012). New antiviral therapies in the management of HCV infection. Antivir. Ther. 17, 771–783.

    PubMed  CAS  Article  Google Scholar 

  7. Francesco, R.D., and Migliaccio, G. (2005). Challenges and successes in developing new therapies for hepatitis C. Nature 436, 953–960.

    PubMed  Article  Google Scholar 

  8. Frick, D.N. (2007). The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Curr. Issues Mol. Biol. 9, 1–20.

    PubMed  CAS  Google Scholar 

  9. Frost, R., Jönsson, G.E., Chakarov, D., Svedhem, S., and Kasemo, B. (2012). Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett. 12, 3356–3362.

    PubMed  CAS  Article  Google Scholar 

  10. He, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., Wang, L., Song, S., Fang, H., and Fan, C. (2010). A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453–459.

    CAS  Article  Google Scholar 

  11. Hicham Alaoui-Ismaili, M., Gervais, C., Brunette, S., Gouin, G., Hamel, M., Rando, F., and Bedard, J. (2000). A novel high throughput screening assay for HCV NS3 helicase activity. Antiviral Res. 46, 181–193.

    PubMed  CAS  Article  Google Scholar 

  12. Hsu, C.C., Hwang, L.H., Huang, Y.W., Chi, W.K., Chu, D., and Chen, D.S. (1998). An ELISA for RNA helicase activity: application as an assay of the NS3 helicase of hepatitis C virus. Biochem. Biophys. Res. Commun. 253, 594–599.

    PubMed  CAS  Article  Google Scholar 

  13. Huang, J.D., Zheng, B.J., and Sun, H.Z. (2008). Helicases as antiviral drug targets. Hong Kong Med. J. 14, S36–S38.

    Google Scholar 

  14. Huang, X., Yin, Z., Wu, S., Qu, X., He, Q., Zhang, Q., Yan, Q., Boey, F., and Zhang, G. (2011). Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902.

    PubMed  CAS  Article  Google Scholar 

  15. Jang, H., Kim, Y.K., Kwon, H.M., Yeo, W.S., Kim, D.E., and Min, D.H. (2010). A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angew. Chem. Int. Ed. Engl. 49, 5703–5707.

    PubMed  CAS  Article  Google Scholar 

  16. Jang, H., Ryoo, S.R., Kim, Y.K., Yoon, S., Kim, H., Han, S.W., Choi, B.S., Kim, D.E., and Min, D.H. (2013). Discovery of hepatitis C virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxde. Angew. Chem. Int. Ed. Engl. 52, 2340–2344.

    PubMed  CAS  Article  Google Scholar 

  17. Kwong, A.D., and Risano, C. (1998). Development of a hepatitis C virus RNA helicase high throughput assay. In Antiviral Methods and Protocols, D. Kinchington, and R.F. Schinazi, eds. (Totowa, NJ: Humana Press Inc.).

    Google Scholar 

  18. Kyono, K., Miyashiro, M., and Taguchi, I. (1998). Detection of hepatitis C virus helicase activity using the scintillation proximity assay system. Anal. Biochem. 257, 120–126.

    PubMed  CAS  Article  Google Scholar 

  19. Lee, J., and Min, D.H. (2012). A simple fluorometric assay for DNA exonuclease activity based on graphene oxide. Analyst 137, 2024–2026.

    PubMed  CAS  Article  Google Scholar 

  20. Lee, J., Kim, Y.K., and Min, D.H. (2011). A new assay for endonuclease/methyltransferase activities based on graphene oxide. Anal. Chem. 83, 8906–8912.

    PubMed  CAS  Article  Google Scholar 

  21. Lee, L.Y., Tong, C.Y., Wong, T., and Wilkinson, M. (2012). New therapies for chronic hepatitis C infection: a systematic review of evidence from clinical trials. Int. J. Clin. Pract. 66, 342–355.

    PubMed  CAS  Article  Google Scholar 

  22. Li, K., Frankowski, K.J., Belon, C.A., Neuenswander, B., Ndjomou, J., Hanson, A.M., Shanahan, M.A., Schoenen, F.J., Blagg, B. S.J., Aube, J., et al. (2012). Optimization of potent hepatitis C virus NS3 helicase inhibitors isolated from the yellow dyes thioflavins S and primuline. J. Med. Chem. 55, 3319–3330.

    PubMed  CAS  Article  Google Scholar 

  23. Liu, Z., Robinson, J.T., Sun, X., and Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877.

    PubMed  CAS  Article  Google Scholar 

  24. Loh, K.P., Bao, Q., Eda, G., and Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024.

    PubMed  CAS  Article  Google Scholar 

  25. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., and Chen, G.N. (2009). A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. Engl. 48, 4785–4787.

    PubMed  CAS  Article  Google Scholar 

  26. Luo, J., Cote, L.J., Tung, V.C., Tan, A.T., Goins, P.E., Wu, J., and Huang, J. (2010). Graphene oxide nanocolloids. J. Am. Chem. Soc. 132, 17667–17669.

    PubMed  CAS  Article  Google Scholar 

  27. Morales-Narváez, E., Pérez-López, B., Pires, L.B., and Merkoçi, A. (2012). Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 2, 2987–2993.

    Article  Google Scholar 

  28. Mu, Q., Su, G., Li, L., Gilbertson, B.O., Yu, L.H., Zhang, Q., Sun, Y.P., and Yan, B. (2012). Size-dependent cell uptake of proteincoated graphene oxide nanosheets. ACS Appl. Mater. Interfaces 4, 2259–2266.

    PubMed  CAS  Article  Google Scholar 

  29. Mukherjee, S., Hanson, A.M., Shadrick, W.R., Ndjomou, J., Sweeney, N.L., Hernandez, J.J., Bartczak, D., Li, K., Frankowski, K.J., Heck, J.A., et al. (2012). Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic Acids Res. 40, 8607–8621.

    PubMed  CAS  Article  Google Scholar 

  30. Pan, S., and Aksay, I.A. (2011). Factors controlling the size of grapheme oxide sheets produced via the graphite oxide route. ACS Nano 5, 4073–4083.

    PubMed  CAS  Article  Google Scholar 

  31. Park, J.S., Na, H.K., Min, D.H., and Kim, D.E. (2013). Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst 138, 1745–1749.

    PubMed  CAS  Article  Google Scholar 

  32. Porter, D.J., Short, S.A., Hanlon, M.H., Preugscaht, F., Wilson, J.E., Willard, J., and Consler, T.G. (1998). Product release is the major contributor to kcat for the hepatitis C virus helicase-catalyzed strand separation of short duplex DNA. J. Biol. Chem. 273, 18906–18914.

    PubMed  CAS  Article  Google Scholar 

  33. Rajagopal, V., and Patel, S.S. (2008). Single strand binding proteins increase the processivity of DNA unwinding by the hepatitis C virus helicase. J. Mol. Biol. 376, 69–79.

    PubMed  CAS  Article  Google Scholar 

  34. Raney, K.D., Sowers, L.C., Millar, D.P., and Benkovic, S.J. (1994). A fluorescence-based assay for monitoring helicase activity. Proc. Natl. Acad. Sci. USA 91, 6644–6648.

    PubMed  CAS  Article  Google Scholar 

  35. Tai, C.L., Chi, W.K., Chen, D.S., and Hwang, L.H. (1996). The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70, 8477–8484.

    PubMed  CAS  Google Scholar 

  36. Varghese, N., Mogera, U., Govindaraj, A., Das, A., Maiti, P.K., Sood, A.K., and Rao, C.N.R. (2009). Binding of DNA nucleobases and nucleosides with graphene. Chemphyschem 10, 206–210.

    PubMed  CAS  Article  Google Scholar 

  37. Wang, Y., Li, Y.M., Tang, L.H., Lu, J., and Li, J. (2009). Application of graphene modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892.

    CAS  Article  Google Scholar 

  38. Wang, Q., Arnold, J.J., Uchida, A., Raney, D., and Cameron, C.E. (2010). Phosphate release contributes to the rate-limiting step for unwinding by an RNA helicase. Nucleic Acids Res. 38, 1312–1324.

    PubMed  CAS  Article  Google Scholar 

  39. Wang, Y., Li, Z., Wang, J., Li, J., and Lin, Y. (2011a). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205–212.

    PubMed  Article  Google Scholar 

  40. Wang, H., Zhang, Q., Chu, X., Chen, T., Ge, J., and Yu, R. (2011b). Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed. Engl. 50, 7065–7069.

    PubMed  CAS  Article  Google Scholar 

  41. Zhang, L., Schwartz, G., O’Donnell, M., and Harrison, R.K. (2001). Development of a novel helicase assay using electrochemiluminescence. Anal. Biochem. 293, 31–37.

    PubMed  CAS  Article  Google Scholar 

  42. Zhang, W., Guo, Z.Y., Huang, D.Q., Liu, Z., Guo, X., and Zhong, H. (2011). Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32, 8555–8561.

    PubMed  CAS  Article  Google Scholar 

  43. Zhang, Y., Zhang, J., Huang, X., Zhou, X., Wu, H., and Guo, S. (2012). Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8, 154–159.

    PubMed  CAS  Article  Google Scholar 

  44. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dal-Hee Min.

About this article

Cite this article

Jang, H., Ryoo, SR., Lee, M.J. et al. A new helicase assay based on graphene oxide for anti-viral drug development. Mol Cells 35, 269–273 (2013). https://doi.org/10.1007/s10059-013-0066-1

Download citation

Keywords

  • biosensor
  • drug screening
  • graphene oxide
  • helicase
  • hepatitis C