Skip to main content
Log in

Giant chloroplast development in ethylene response1-1 is caused by a second mutation in ACCUMULATION AND REPLICATION OF CHLOROPLAST3 in Arabidopsis

  • Published:
Molecules and Cells

Abstract

The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, S., and Mimuro, M. (2007). Application of time-resolved polarization fluorescence spectroscopy in the femtosecond range to photosynthetic systems. Photochem. Photobiol. 83, 163–170.

    PubMed  CAS  Google Scholar 

  • Aldridge, C., Maple, J., and Møller, S.G. (2005). The molecular biology of plastid division in higher plants. J. Exp. Bot. 56, 1061–1077.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y.H., and Yoo, S.D. (2007). ETHYLENE RESPONSE 1 histidine kinase activity of Arabidopsis promotes plant growth. Plant Physiol. 143, 612–616.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira, F.J., and Kieber, J.J. (2005). Cytokinin signaling. Curr. Opin. Plant Biol. 8, 518–525.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara, M.T., Nakamura, A., Itoh, R., Shimada, Y., Yoshida, S., and Møller, S.G. (2004). Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J. Cell Sci. 117, 2399–2410.

    Article  PubMed  CAS  Google Scholar 

  • Gao, H., Kadirjan-Kalbach, D., Froehlich, J.E., and Osteryoung, K.W. (2003). ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl. Acad. Sci. USA 100, 4328–4333.

    Article  PubMed  CAS  Google Scholar 

  • Glynn, J.M., Froehlich, J.E., and Osteryoung, K.W. (2008). Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20, 2460–2470.

    Article  PubMed  CAS  Google Scholar 

  • Glynn, J.M., Yang, Y., Vitha, S., Schmitz, A.J., Hemmes, M., Miyagishima, S.Y., and Osteryoung, K.W. (2009). PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J. 59, 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, J.A. (2000). Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., and Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I., Chen, H-C., and Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129, 500–515.

    Article  PubMed  CAS  Google Scholar 

  • Ii, J.A., and Webber, A.N. (2005). Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number. Photosynth. Res. 85, 373–384.

    Article  PubMed  Google Scholar 

  • Karukstis, K.K., and Sauer, K. (1983). Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. J. Cell Biochem. 23, 131–158.

    Article  PubMed  CAS  Google Scholar 

  • Kutschera, U., and Niklas, K.J. (2005). Endosymbiosis, cell evolution, and speciation. Theory Biosic. 124, 1–24.

    Article  CAS  Google Scholar 

  • Leon, P., Arroyo, A., and Mackenzie, S. (1998). Nuclear control of plastid and mitochondrial development in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 453–480.

    Article  PubMed  CAS  Google Scholar 

  • Maple, J., and Møller, S.G. (2010). The complexity and evolution of the plastid-division machinery. Biochem. Soc. Trans. 38, 783–788.

    Article  PubMed  CAS  Google Scholar 

  • Maple, J., Volta, L., Soll, J., and Møller, S.G. (2007). ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep. 8, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. (1970). Origin of eukaryotic cells. (New Haven, Yale University Press).

    Google Scholar 

  • Marrison, J.L., Rutherford, S.M., Robertson, E.J., Lister, C., Dean, C., and Leech, R.M. (1999). The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J. 18, 651–662.

    Article  PubMed  CAS  Google Scholar 

  • Mason, M.G., and Schaller, G.E. (2005). Histidine kinase activity and the regulation of ethylene signal transduction. Can. J. Bot. 83, 563–570.

    Article  CAS  Google Scholar 

  • McFadden, G.I. (2001). Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 37, 951–959.

    Article  Google Scholar 

  • Miyagishima, S.Y., Froehlich, J.E., and Osteryoung, K.W. (2006). PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell 18, 2517–2530.

    Article  PubMed  CAS  Google Scholar 

  • Mount, S.M., and Chang. C. (2002). Evidence for a plastid origin of plant ethylene receptor genes. Plant Physiol. 130, 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, K., Kabeya, Y., Suzuki, K., Mori, T., Ichikawa, T., Matsui, M., Nakanishi, H., and Miyagishima, S.Y. (2009). The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell 21, 1769–1780.

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung, K.W., and McAndrew, R.S. (2001). The plastid division machine. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 315–333.

    Article  PubMed  CAS  Google Scholar 

  • Pyke, K.A., and Leech, R.M. (1994). A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol. 104, 201–207.

    PubMed  CAS  Google Scholar 

  • Pyke, K.A., Rutherford, S.M., Robertson, E.J., and Leech, R.M. (1994). arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiol. 106, 1169–1177.

    PubMed  CAS  Google Scholar 

  • Sagan, L. (1967). On the origin of mitosing cells. J. Theoretical Biol. 14, 225–274.

    Article  CAS  Google Scholar 

  • Sakamoto, W., Miyagishima, S.-Y., and Jarvis, P. (2008). Chloroplast Biogenesis, Control of plastid development, protein import, division and inheritance. The Arabidopsis book. doi, 10.1199/tab.0110.

  • Shimada, H., Koizumi, M., Kuroki, K., Mochizuki, M., Fujimoto, H., Ohta, H., Masuda, T., and Takamiya, K. (2004). ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol. 45, 960–967.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J.B., Ninfa, A.J., and Stock, A.M. (1989). Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Mol. Biol. Rev. 53, 450–490.

    CAS  Google Scholar 

  • Stokes, K.D., McAndrew, R.S., Figueroa, R., Vitha, S., and Osteryoung, K.W. (2000). Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol. 124, 1668–1677.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesop hyll protoplasts, A versatile cell system for transient gene expression analysis. Nat. Protocols 2, 1565–1572.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Dong Yoo.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Cho, YH., Kim, GD. & Yoo, SD. Giant chloroplast development in ethylene response1-1 is caused by a second mutation in ACCUMULATION AND REPLICATION OF CHLOROPLAST3 in Arabidopsis . Mol Cells 33, 99–103 (2012). https://doi.org/10.1007/s10059-012-2245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2245-x

Keywords

Navigation