Advertisement

Molecules and Cells

, Volume 33, Issue 2, pp 117–126 | Cite as

Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency

  • Sichul Lee
  • Nayeon Ryoo
  • Jong-Seong Jeon
  • Mary Lou Guerinot
  • Gynheung AnEmail author
Article

Abstract

Graminaceous plants release ferric-chelating phytosiderophores that bind to iron. These ferric-phytosiderophore complexes are transported across the plasma membrane by a protein produced from Yellow Stripe 1 (YS1). Here, we report the characterization of OsYSL16, one of the YS1-like genes in rice. Real-time analysis revealed that this gene was constitutively expressed irrespective of metal status. Promoter fusions of OsYSL16 to β-glucuronidase (GUS) showed that OsYSL16 was highly expressed in the vascular tissues of the root, leaf, and spikelet, and in leaf mesophyll cells. The OsYSL16-green fluorescence protein (GFP) fusion protein was localized to the plasma membrane. From a pool of rice T-DNA insertional lines, we identified two independent activation-tagging mutants in OsYSL16. On an Fe-deficient medium, those mutants retained relatively high chlorophyll concentrations compared with the wild-type (WT) controls, indicating that they are more tolerant to a lack of iron. The Fe concentration in shoots was also higher in the OsYSL16 activation lines than in the WT. During germination, the rate of Fe-utilization from the seeds was higher in the OsYSL16 activation lines than in the WT seeds. Our results suggest that the function of OsYSL16 in Fe-homeostasis is to enable distribution of iron within a plant.

Keywords

activation tagging homeostasis iron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, G., Ebert, P.R., Mitra, A., and Ha, S.B. (1988). Binary vectors. In Plant Molecular Biology Manual, S.B. Gelvin, and R.A. Schilperoort, eds. (Dordrecht, Kluwer Academic Publishers), pp. A3, 1–19.Google Scholar
  2. An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040–2047.PubMedCrossRefGoogle Scholar
  3. Aoyama, T., Kobayashi, T., Takahashi, M., Nagasaka, S., Usuda, K., Kakei, Y., Ishimaru, Y., Nakanishi, H,, Mori, S., and Nishizawa, N.K. (2009). OsYSL18 is a rice Fe(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol. Biol. 70, 681–692.PubMedCrossRefGoogle Scholar
  4. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.PubMedCrossRefGoogle Scholar
  5. Basso, B., Bagnaresi, P., Bracale, M., and Soave, C. (1994). The yellow-stripe-1 and -3 mutants of maize: nutritional and biochemical studies. Maydica 39, 97–105.Google Scholar
  6. Chu, H.H., Chiecko, J., Punshon, T., Lanzirotti, A., Lahner, B., Salt, D.E., and Walker, E.L. (2010). Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol. 154, 197–210.PubMedCrossRefGoogle Scholar
  7. Colangelo, E.P., and Guerinot, M.L. (2006). Put the metal to the petal, metal uptake and transport throughout plants. Curr. Opin. Plant Biol. 9, 322–330.PubMedCrossRefGoogle Scholar
  8. Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F., and Walker, E.L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409, 346–349.PubMedCrossRefGoogle Scholar
  9. Di Donato, R.J., Roberts, L.A., Sanderson, T., Eisley, R.B., and Walker, E.L. (2004). Arabidopsis Yellow Stripe-like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J. 39, 403–414.CrossRefGoogle Scholar
  10. Gendre, D., Czernic, P., Conejero, G., Pianelli, K., Briat, J.F., Lebrun, M., and Mari, S. (2007). TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J. 49, 1–15.PubMedCrossRefGoogle Scholar
  11. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.PubMedCrossRefGoogle Scholar
  12. Guerinot, M.L., and Yi, Y. (1994). Iron: nutritious, noxious and not readily available. Plant Physiol. 104, 815–820.PubMedGoogle Scholar
  13. Harrison, P.M., and Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203.PubMedCrossRefGoogle Scholar
  14. Henriques, R., Jasik, J., Klein, M., Martinoia, E., Feller, U., Schell, J., Pais, M.S., and Koncz, C. (2002). Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol. Biol. 50, 587–597.PubMedCrossRefGoogle Scholar
  15. Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 284, 3470–3479.PubMedCrossRefGoogle Scholar
  16. Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., et al. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 45, 335–346.PubMedCrossRefGoogle Scholar
  17. Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R., et al. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 62, 379–390.PubMedCrossRefGoogle Scholar
  18. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132.PubMedCrossRefGoogle Scholar
  19. Kang, H.G., Jeon, J.S., Lee, S., and An, G. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38, 1021–1029.PubMedCrossRefGoogle Scholar
  20. Koike, S., Inoue, H., Mizuno, D., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2004). OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 39, 415–424.PubMedCrossRefGoogle Scholar
  21. Lee, S., and An, G. (2009). Overexpression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416.PubMedCrossRefGoogle Scholar
  22. Lee, S., Jeon, J.S., Jung, K.H., and An, G. (1999) Binary vector for efficient transformation of rice. J. Plant Biol. 42, 310–316.CrossRefGoogle Scholar
  23. Lee, S., Chiecko, J.C., Kim, S.A., Walker, E.L., Lee, Y., Guerinot, M.L., and An, G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150, 786–800.PubMedCrossRefGoogle Scholar
  24. Le Jean, M., Schikora, A., Mari, S., Briat, J.F., and Curie, C. (2005). A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J. 44, 769–782.PubMedCrossRefGoogle Scholar
  25. Marschner, H., and Römheld, V. (1994). Strategies of plants for acquisition of iron. Plant Soil. 165, 375–388.CrossRefGoogle Scholar
  26. Mori, S. (1999). Iron acquisition by plants. Curr. Opin. Plant Biol. 2, 250–253.PubMedCrossRefGoogle Scholar
  27. Murata, Y., Ma, J.F., Yamaji, N., Ueno, D., Nomoto, K., and Iwashita, T. (2006). A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J. 46, 563–572.PubMedCrossRefGoogle Scholar
  28. Roberts, L.A., Pierson, A.J., Panaviene, Z., and Walker, E.L. (2004). Yellow stripe1: expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol. 135, 112–120.PubMedCrossRefGoogle Scholar
  29. Robinson, N.J., Procter, C.M., Connolly, E.L., and Guerinot, M.L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature 397, 694–697.PubMedCrossRefGoogle Scholar
  30. Römheld, V., and Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175–180.PubMedCrossRefGoogle Scholar
  31. Schaaf, G., Ludewig, U., Erenoglu, B.E., Mori, S., Kitahara, T., and von Wirén, N. (2004). ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J. Biol. Chem. 279, 9091–9096.PubMedCrossRefGoogle Scholar
  32. Schaaf, G., Schikora, A., Haberle, J., Vert, G., Ludewig, U., Briat, J.F., Curie, C., and von Wirén, N. (2005). A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol. 46, 762–774.PubMedCrossRefGoogle Scholar
  33. Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., and Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J. 31, 589–599.PubMedCrossRefGoogle Scholar
  34. Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., and Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 14, 1223–1233.PubMedCrossRefGoogle Scholar
  35. Vert, G., Barberon, M., Zelazny, E., Séguéla, M., Briat, J.F., and Curie, C. (2009). Arabidopsis IRT2 cooperates with the highaffinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229, 1171–1179.PubMedCrossRefGoogle Scholar
  36. Waters, B.M., Chu, H.H., Di Donato, R.J., Roberts, L.A., Eisley, R.B., Lahner, B., Salt, D.E., and Walker, E.L. (2006). Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol. 141, 1446–1458.PubMedCrossRefGoogle Scholar
  37. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  • Sichul Lee
    • 1
  • Nayeon Ryoo
    • 2
  • Jong-Seong Jeon
    • 2
  • Mary Lou Guerinot
    • 1
  • Gynheung An
    • 3
    Email author
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Graduate School of BiotechnologyKyung Hee UniversityYonginKorea
  3. 3.Department of Plant Molecular Systems Biotechnology and Crop Biotech InstituteKyung Hee UniversityYonginKorea

Personalised recommendations