Skip to main content
Log in

Impact of retrotransposons in pluripotent stem cells

Molecules and Cells

Abstract

Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to ‘jump’ across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alemán, C., Roy-Engel, A.M., Shaikh, T.H., and Deininger, P.L. (2000). Cis-acting influences on Alu RNA levels. Nucleic Acids Res. 28, 4755–4761.

    Article  PubMed  Google Scholar 

  • Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., and Zoghbi, H.Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Athanasiadis, A., Rich, A., and Maas, S. (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391.

    Article  PubMed  Google Scholar 

  • Bailey, J.A., Carrel, L., Chakravarti, A., and Eichler, E.E. (2000). Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 97, 6634–6639.

    Article  PubMed  CAS  Google Scholar 

  • Baillie, J.K., Barnett, M.W., Upton, K.R., Gerhardt, D.J., Richmond, T.A., De Sapio, F., Brennan, P.M., Rizzu, P., Smith, S., Fell, M., et al. (2011). Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537.

    Article  PubMed  CAS  Google Scholar 

  • Balaj, L., Lessard, R., Dai, L., Cho, Y.J., Pomeroy, S.L., Breakefield, X.O., and Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180.

    Article  PubMed  CAS  Google Scholar 

  • Batzer, M.A., and Deininger, P.L. (2002). Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, E.A., Keller, H., Mills, R.E., Schmidt, S., Moran, J.V., Weichenrieder, O., and Devine, S.E. (2008). Active Alu retrotransposons in the human genome. Genome Res. 18, 1875–1883.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., McMahon, S., Karlsson, E.K., Kulbokas, E.J., Gingeras, T.R., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181.

    Article  PubMed  CAS  Google Scholar 

  • Bogerd, H.P., Wiegand, H.L., Hulme, A.E., Garcia-Perez, J.L., O’shea, K.S., Moran, J.V., and Cullen, B.R. (2006). Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl. Acad. Sci. USA 103, 8780–8785.

    Article  PubMed  CAS  Google Scholar 

  • Bourque, G., Leong, B., Vega, V.B., Chen, X., Lee, Y.L., Srinivasan, K.G., Chew, J.L., Ruan, Y., Wei, C.L., Ng, H.H., et al. (2008). Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762.

    Article  PubMed  CAS  Google Scholar 

  • Branco, M.R., Ficz, G., and Reik, W. (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 13, 7–13.

    CAS  Google Scholar 

  • Chen, L.L., and Carmichael, G.G. (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.M., Férec, C., and Cooper, D.N. (2006). LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. J. Biomed. Biotechnol. 2006, 56182.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.L., DeCerbo, J.N., and Carmichael, G.G. (2008). Alu element-mediated gene silencing. EMBO J. 27, 1694–1705.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, A.Y., Horvath, L.M., Grafodatskaya, D., Pasceri, P., Weksberg, R., Hotta, A., Carrel, L., and Ellis, J. (2011). Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum. Mol. Genet. 20, 2103–2115.

    Article  PubMed  CAS  Google Scholar 

  • Chin, M.H., Mason, M.J., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Chow, J.C., Ciaudo, C., Fazzari, M.J., Mise, N., Servant, N., Glass, J.L., Attreed, M., Avner, P., Wutz, A., Barillot, E., et al. (2010). LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141, 956–969.

    Article  PubMed  CAS  Google Scholar 

  • Cordaux, R., and Batzer, M.A. (2009). The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703.

    Article  PubMed  CAS  Google Scholar 

  • Coufal, N.G., Garcia-Perez, J.L., Peng, G.E., Yeo, G.W., Mu, Y., Lovci, M.T., Morell, M., O’shea, K.S., Moran, J.V., and Gage, F.H. (2009). L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, P.L., and Batzer, M.A. (1999). Alu repeats and human disease. Mol. Genet. Metab. 67, 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Deng, W., and Xu, Y. (2009). Genome integrity: linking pluripotency and tumorgenicity. Trends Genet. 25, 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Draper, J.S., Smith, K., Gokhale, P., Moore, H.D., Maltby, E., Johnson, J., Meisner, L., Zwaka, T.P., Thomson, J.A., and Andrews, P.W. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54.

    Article  PubMed  CAS  Google Scholar 

  • Englander, E.W., and Howard, B.H. (1995). Nucleosome positioning by human Alu elements in chromatin. J. Biol. Chem. 270, 10091–10096.

    Article  PubMed  CAS  Google Scholar 

  • Englander, E.W., and Howard, B.H. (1996). A naturally occurring T14A11 tract blocks nucleosome formation over the human neurofibromatosis type 1 (NF1)-Alu element. J. Biol. Chem. 271, 5819–5823.

    Article  PubMed  CAS  Google Scholar 

  • Estécio, M.R., Gallegos, J., Vallot, C., Castoro, R.J., Chung, W., Maegawa, S., Oki, Y., Kondo, Y., Jelinek, J., Shen, L., et al. (2010). Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res. 20, 1369–1382.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Q., Moran, J.V., Kazazian, H.H., and Boeke, J.D. (1996). Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916.

    Article  PubMed  CAS  Google Scholar 

  • Ficz, G., Branco, M.R., Seisenberger, S., Santos, F., Krueger, F., Hore, T.A., Marques, C.J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D.J. (1997). Transposable elements: how non-LTR retrotransposons do it. Curr. Biol. 7, R245–248.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perez, J.L., Marchetto, M.C., Muotri, A.R., Coufal, N.G., Gage, F.H., O’shea, K.S., and Moran, J.V. (2007). LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16, 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  • Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J., et al. (2004). Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360–380.

    Article  PubMed  CAS  Google Scholar 

  • Grover, D., Mukerji, M., Bhatnagar, P., Kannan, K., and Brahmachari, S.K. (2004). Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20, 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Hancks, D.C., and Kazazian, H.H. (2010). SVA retrotransposons: Evolution and genetic instability. Semin. Cancer Biol. 20, 234–245.

    Article  PubMed  CAS  Google Scholar 

  • Hancks, D.C., and Kazazian, H.H. (2012). Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203.

    Article  PubMed  CAS  Google Scholar 

  • Hancks, D.C., Goodier, J.L., Mandal, P.K., Cheung, L.E., and Kazazian, H.H. (2011). Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum. Mol. Genet. 20, 3386–3400.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, J., Cheng, A.W., Saha, K., Kim, J., Lengner, C.J., Soldner, F., Cassady, J.P., Muffat, J., Carey, B.W., and Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. USA 107, 9222–9227.

    Article  PubMed  CAS  Google Scholar 

  • Häsler, J., Samuelsson, T., and Strub, K. (2007). Useful ‘junk’: Alu RNAs in the human transcriptome. Cell Mol. Life Sci. 64, 1793–1800.

    Article  PubMed  CAS  Google Scholar 

  • Havecker, E.R., Gao, X., and Voytas, D.F. (2004). The diversity of LTR retrotransposons. Genome Biol. 5, 225.

    Article  PubMed  Google Scholar 

  • Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L.E., Kuan, S., Luu, Y., Klugman, S., et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, M., Paro, S., Keegan, L.P., and O’Connell, M.A. (2011). RNA editing by mammalian ADARs. Adv. Genet. 73, 87–120.

    Article  PubMed  CAS  Google Scholar 

  • Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.R., Schneider, A.M., Lu, Y., Niranjan, T., Shen, P., Robinson, M.A., Steranka, J.P., Valle, D., Civin, C.I., Wang, T., et al. (2010). Mobile interspersed repeats are major structural variants in the human genome. Cell 141, 1171–1182.

    Article  PubMed  CAS  Google Scholar 

  • Huda, A., Mariño-Ramírez, L., and Jordan, I.K. (2010). Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob. DNA 1, 2.

    Article  PubMed  CAS  Google Scholar 

  • Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., Närvänen, E., Ng, S., Sourour, M., Hämääinen, R., Olsson, C., et al. (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  • Jung, Y.W., Hysolli, E., Kim, K.Y., Tanaka, Y., and Park, I.H. (2012). Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr. Opin. Neurol. 25, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Kano, H., Godoy, I., Courtney, C., Vetter, M.R., Gerton, G.L., Ostertag, E.M., and Kazazian, H.H. (2009). L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23, 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Izpisúa Belmonte, J.C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H.H., Wong, C., Youssoufian, H., Scott, A.F., Phillips, D.G., and Antonarakis, S.E. (1988). Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.Y., Hysolli, E., and Park, I.H. (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc. Natl. Acad. Sci. USA 108, 14169–14174.

    Article  PubMed  CAS  Google Scholar 

  • Kinomoto, M., Kanno, T., Shimura, M., Ishizaka, Y., Kojima, A., Kurata, T., Sata, T., and Tokunaga, K. (2007). All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res. 35, 2955–2964.

    Article  PubMed  CAS  Google Scholar 

  • Kolosha, V.O., and Martin, S.L. (1997). In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc. Natl. Acad. Sci. USA 94, 10155–10160.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, Y., and Issa, J.P. (2003). Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J. Biol. Chem. 278, 27658–27662.

    Article  PubMed  CAS  Google Scholar 

  • Krull, M., Brosius, J., and Schmitz, J. (2005). Alu-SINE exonization: en route to protein-coding function. Mol. Biol. Evol. 22, 1702–1711.

    Article  PubMed  CAS  Google Scholar 

  • Kunarso, G., Chia, N.Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y.S., Ng, H.H., and Bourque, G. (2010). Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634.

    Article  PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lefort, N., Feyeux, M., Bas, C., Féraud, O., Bennaceur-Griscelli, A., Tachdjian, G., Peschanski, M., and Perrier, A.L. (2008). Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat. Biotechnol. 26, 1364–1366.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Maor, G., Ram, O., Kim, E., Sela, N., Goren, A., Levanon, E.Y., and Ast, G. (2008). Intronic Alus influence alternative splicing. PLoS Genet 4, e1000204.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Q., Conte, N., Skarnes, W.C., and Bradley, A. (2008). Extensive genomic copy number variation in embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 17453–17456.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M.F. (1998). X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80, 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M.F. (2000). LINE-1 elements and X chromosome inactivation: a function for ‘junk’ DNA? Proc. Natl. Acad. Sci. USA 97, 6248–6249.

    Article  PubMed  CAS  Google Scholar 

  • Macia, A., Muñoz-Lopez, M., Cortes, J.L., Hastings, R.K., Morell, S., Lucena-Aguilar, G., Marchal, J.A., Badge, R.M., and Garcia-Perez, J.L. (2011). Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol. Cell. Biol. 31, 300–316.

    Article  PubMed  CAS  Google Scholar 

  • Marchetto, M.C., Carromeu, C., Acab, A., Yu, D., Yeo, G.W., Mu, Y., Chen, G., Gage, F.H., and Muotri, A.R. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539.

    Article  PubMed  CAS  Google Scholar 

  • Martens, J.H., O’sullivan, R.J., Braunschweig, U., Opravil, S., Radolf, M., Steinlein, P., and Jenuwein, T. (2005). The profile of repeatassociated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.L., and Bushman, F.D. (2001). Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.L., Cruceanu, M., Branciforte, D., Wai-Lun Li, P., Kwok, S.C., Hodges, R.S., and Williams, M.C. (2005). LINE-1 retrotrans-position requires the nucleic acid chaperone activity of the ORF1 protein. J. Mol. Biol. 348, 549–561.

    Article  PubMed  CAS  Google Scholar 

  • Mathias, S.L., Scott, A.F., Kazazian, H.H., Boeke, J.D., and Gabriel, A. (1991). Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810.

    Article  PubMed  CAS  Google Scholar 

  • Mätlik, K., Redik, K., and Speek, M. (2006). L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 71753.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.

    PubMed  CAS  Google Scholar 

  • Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Muotri, A.R., Marchetto, M.C., Coufal, N.G., Oefner, R., Yeo, G., Nakashima, K., and Gage, F.H. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Musova, Z., Hedvicakova, P., Mohrmann, M., Tesarova, M., Krepelova, A., Zeman, J., and Sedlacek, Z. (2006). A novel insertion of a rearranged L1 element in exon 44 of the dystrophin gene: further evidence for possible bias in retroposon integration. Biochem. Biophys. Res. Commun. 347, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Närvä, E., Autio, R., Rahkonen, N., Kong, L., Harrison, N., Kitsberg, D., Borghese, L., Itskovitz-Eldor, J., Rasool, O., Dvorak, P., et al. (2010). High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 28, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Nigumann, P., Redik, K., Mätlik, K., and Speek, M. (2002). Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, Y., Totoki, Y., Toyoda, A., Watanabe, T., Yamamoto, Y., Tokunaga, K., Sakaki, Y., Sasaki, H., and Hohjoh, H. (2010). Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic Acids Res. 38, 5141–5151.

    Article  PubMed  CAS  Google Scholar 

  • Osenberg, S., Paz Yaacov, N., Safran, M., Moshkovitz, S., Shtrichman, R., Sherf, O., Jacob-Hirsch, J., Keshet, G., Amariglio, N., Itskovitz-Eldor, J., et al. (2010). Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS One 5, e11173.

    Article  PubMed  CAS  Google Scholar 

  • Ostertag, E.M., Goodier, J.L., Zhang, Y., and Kazazian, H.H. (2003). SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet. 73, 1444–1451.

    Article  PubMed  CAS  Google Scholar 

  • Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Pastor, W.A., Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., McLoughlin, E.M., Brudno, Y., Mahapatra, S., Kapranov, P., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Peng, Z., Cheng, Y., Tan, B.C., Kang, L., Tian, Z., Zhu, Y., Zhang, W., Liang, Y., Hu, X., Tan, X., et al. (2012). Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat. Biotechnol. 30, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Pomp, O., Dreesen, O., Leong, D.F., Meller-Pomp, O., Tan, T.T., Zhou, F., and Colman, A. (2011). Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. Cell Stem Cell 9, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, A.R., Boland, M.J., Leibowitz, M.L., Shumilina, S., Pehrson, S.M., Baldwin, K.K., and Hall, I.M. (2011). Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9, 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Richards, M., Tan, S.P., Tan, J.H., Chan, W.K., and Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Roy-Engel, A.M., El-Sawy, M., Farooq, L., Odom, G.L., Perepelitsa-Belancio, V., Bruch, H., Oyeniran, O.O., and Deininger, P.L. (2005). Human retroelements may introduce intragenic polyadenylation signals. Cytogenet. Genome Res. 110, 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Ruzov, A., Tsenkina, Y., Serio, A., Dudnakova, T., Fletcher, J., Bai, Y., Chebotareva, T., Pells, S., Hannoun, Z., Sullivan, G., et al. (2011). Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 21, 1332–1342.

    Article  PubMed  CAS  Google Scholar 

  • Speek, M. (2001). Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985.

    Article  PubMed  CAS  Google Scholar 

  • Spits, C., Mateizel, I., Geens, M., Mertzanidou, A., Staessen, C., Vandeskelde, Y., Van der Elst, J., Liebaers, I., and Sermon, K. (2008). Recurrent chromosomal abnormalities in human embryonic stem cells. Nat. Biotechnol. 26, 1361–1363.

    Article  PubMed  CAS  Google Scholar 

  • Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S., and Jacobsen, S.E. (2011). 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54.

    Article  PubMed  CAS  Google Scholar 

  • Szulwach, K.E., Li, X., Li, Y., Song, C.X., Han, J.W., Kim, S., Namburi, S., Hermetz, K., Kim, J.J., Rudd, M.K., et al. (2011). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154.

    Article  PubMed  CAS  Google Scholar 

  • Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Yamashita, R., Suzuki, Y., and Nakai, K. (2010). Effects of Alu elements on global nucleosome positioning in the human genome. BMC Genomics 11, 309.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi-Ikeda, M., Kobayashi, K., Kanagawa, M., Yu, C.C., Mori, K., Oda, T., Kuga, A., Kurahashi, H., Akman, H.O., DiMauro, S., et al. (2011). Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, B.A., Scheetz, T.E., Mullins, R.F., DeLuca, A.P., Hoffmann, J.M., Johnston, R.M., Jacobson, S.G., Sheffield, V.C., and Stone, E.M. (2011). Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 108, E569–576.

    Article  PubMed  CAS  Google Scholar 

  • van den Hurk, J.A., Meij, I.C., Seleme, M.C., Kano, H., Nikopoulos, K., Hoefsloot, L.H., Sistermans, E.A., de Wijs, I.J., Mukhopadhyay, A., Plomp, A.S., et al. (2007). L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 16, 1587–1592.

    Article  PubMed  CAS  Google Scholar 

  • Wahlstedt, H., Daniel, C., Ensterö, M., and Ohman, M., (2009). Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res. 19, 978–986.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, N., Wagstaff, B.J., Deininger, P.L., and Roy-Engel, A.M. (2008). LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 419, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Khillan, J., Gadue, P., and Nishikura, K. (2000). Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Miyakoda, M., Yang, W., Khillan, J., Stachura, D.L., Weiss, M.J., and Nishikura, K. (2004). Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., Minami, N., and Imai, H. (2006). Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K., Christensen, J., Pedersen, M.T., Johansen, J.V., Cloos, P.A., Rappsilber, J., and Helin, K. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Wissing, S., Montano, M., Garcia-Perez, J.L., Moran, J.V., and Greene, W.C. (2011). Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J. Biol. Chem. 286, 36427–36437.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., D’Alessio, A.C., Ito, S., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011a). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., D’Alessio, A.C., Ito, S., Xia, K., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011b). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., Wang, M., Bonaldo, M.e.F., Smith, C., Rajaram, V., Goldman, S., Tomita, T., and Soares, M.B. (2009). High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum. Nucleic Acids Res. 37, 4331–4340.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Wu, F., Tan, L., Kong, L., Xiong, L., Deng, J., Barbera, A.J., Zheng, L., Zhang, H., Huang, S., et al. (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464.

    Article  PubMed  CAS  Google Scholar 

  • Yu, F., Zingler, N., Schumann, G., and Strätling, W.H. (2001). Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29, 4493–4501.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Hyun Park.

About this article

Cite this article

Tanaka, Y., Chung, L. & Park, IH. Impact of retrotransposons in pluripotent stem cells. Mol Cells 34, 509–516 (2012). https://doi.org/10.1007/s10059-012-0242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0242-8

Keywords

Navigation