Skip to main content
Log in

The mechanism of phloem loading in rice (Oryza sativa)

  • Minireview
  • Published:
Molecules and Cells

Abstract

Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, N., Hirose, T., Scofield, G.N., Whitfeld, P.R., and Furbank, R.T. (2003). The sucrose transporter gene family in rice. Plant Cell Physiol. 44, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Ayre, B.G. (2011). Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol. Plant 4, 377–394.

    Article  PubMed  CAS  Google Scholar 

  • Botha, C.E., Aoki, N., Scofield, G.N., Liu, L., Furbank, R.T., and White, R.G. (2008). A xylem sap retrieval pathway in rice leaf blades: evidence of a role for endocytosis? J. Exp. Bot. 59, 2945–2954.

    Article  PubMed  CAS  Google Scholar 

  • Braun, D.M., and Slewinski, T.L. (2009). Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tiedyed loci in phloem loading. Plant Physiol. 149, 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Chonan, N., Kaneko, M., Kawahara, H., and Matsuda, T. (1981). Ultrastructure of the large vascular bundles in the leaves of rice plants. Jpn. J. Crop Sci. 50, 323–331.

    Article  Google Scholar 

  • Chonan, N., Kawahara, H., and Matsuda, T. (1984). Ultrastructure of vascular bundles and fundamental parenchyma in relation to movement of photosynthate in leaf sheath of rice. Jpn. J. Crop Sci. 53, 435–444.

    Article  Google Scholar 

  • Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.Q., Qu, X.Q., Hou, B.H., Sosso, D., Osorio, S., Fernie, A.R., and Frommer, W.B. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, A., Keller, F., and Turgeon, R. (2011). Phloem loading, plant growth form, and climate. Protoplasma 248, 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Endler, A., Meyer, S., Schelbert, S., Schneider, T., Weschke, W., Peters, S.W., Keller, F., Baginsky, S., Martinoia, E., and Schmidt, U.G. (2006). Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol. 141, 196–207.

    Article  PubMed  CAS  Google Scholar 

  • Eom, J.S., Cho, J.I., Reinders, A., Lee, S.W., Yoo, Y., Tuan, P.Q., Choi, S.B., Bang, G., Park, Y.I., Cho, M.H., et al. (2011). Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 157, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Evert, R.F., Eschrich, W., and Heyse, W. (1978). Leaf structure in relation to solute transport and phloem loading in Zea mays L. Planta 138, 279–294.

    Article  Google Scholar 

  • Furbank, R.T., Scofield, G.N., Hirose, T., Wang, X-D., Patrick, J.W., and Offler, C.E. (2001). Cellular localization and function of a sucrose transporter OsSUT1 in developing rice grains. Aust. J. Plant Physiol. 28, 1187–1196.

    CAS  Google Scholar 

  • Gamalei, Y. (1989). Structure and function of leaf minor veins in trees and herbs. Trees 3, 96–110.

    Article  Google Scholar 

  • Gottwald, J.R., Krysan, P.J., Young, J.C., Evert, R.F., and Sussman, M.R. (2000). Genetic evidence for the in planta role of phloemspecific plasma membrane sucrose transporters. Proc. Natl. Acad. Sci. USA 97, 13979–13984.

    Article  PubMed  CAS  Google Scholar 

  • Haritatos, E., Medville, R., and Turgeon, R. (2000). Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, T., Imaizumi, N., Scofield, G.N., Furbank, R.T., and Ohsugi, R. (1997). cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol. 38, 1389–1396.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, T., Zhang, Z., Miyao, A., Hirochika, H., Ohsugi, R., and Terao, T. (2010). Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J. Exp. Bot. 61, 3639–3646.

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru, K., Hirose, T., Aoki, N., Takahashi, S., Ono, K., Yamamoto, S., Wu, J., Saji, S., Baba, T., Ugaki, M., et al., (2001). Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant Cell Physiol. 42, 1181–1185.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, M., Chonan, N., and Matsuda, T. (1980). Ultrastructure of the small vascular bundles and transfer pathways for photosynthate in the leaves of rice plant. Jpn. J. Crop Sci. 49, 42–50.

    Article  Google Scholar 

  • Kühn, C. (2003). A comparison of the sucrose transporter systems of different plant species. Plant Biol. 5, 215–232.

    Article  Google Scholar 

  • Kühn, C., and Grof, C.P.L. (2010). Sucrose transporters of higher plants. Curr. Opin. Plant Biol. 13, 288–298.

    Article  PubMed  Google Scholar 

  • Lalonde, S., Wipf, D., and Frommer, W.B. (2004). Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu. Rev. Plant Biol. 55, 341–372.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.K., Jeon, J.S., Bömnke, F., Voll, L., Cho, J.I., Goh, C.H., Jeong, S.W., Park, Y.I., Kim, S.J., Choi, S.B., et al., (2008). Loss of cytoso-lic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardation in rice (Oryza sativa). Plant Cell Environ. 31, 1851–1863.

    Article  PubMed  CAS  Google Scholar 

  • Lim, J.D., Cho, J.I., Park, Y.I., Hahn, T.R., Choi, S.B., and Jeon, J.S. (2006). Sucrose transport from source to sink seeds in rice. Physiol. Planta. 126, 572–584.

    Article  CAS  Google Scholar 

  • Linka, N., and Weber, A.P. (2010). Intracellular metabolite transporters in plants Mol. Plant 3, 21–53.

    CAS  Google Scholar 

  • Martinoia, E., Maeshima, M., and Neuhaus, H.E. (2007). Vacuolar transporters and their essential role in plant metabolism. J. Exp. Bot. 58, 83–102.

    Article  PubMed  CAS  Google Scholar 

  • McCaskill, A., and Turgeon, R. (2007). Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinosefamily oligosaccharides. Proc. Natl. Acad. Sci. USA 104, 19619–19624.

    Article  PubMed  CAS  Google Scholar 

  • Murchie, E.H., Yang, J., Hubbart, S., Horton, P., and Peng, S. (2002). Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J. Exp. Bot. 53, 2217–2224.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, H., Makino, A., and Mae, T. (1995). Effects of panicle removal on the photosynthetic characteristics of the flag leaf of rice plants during the ripening stage. Plant Cell Physiol. 36, 653–659.

    CAS  Google Scholar 

  • Neuhaus, H.E. (2007). Transport of primary metabolites across the plant vacuolar membrane. FEBS Lett. 581, 2223–2226.

    Article  PubMed  CAS  Google Scholar 

  • Ngampanya, B., Takeda, T., Sonoda, Y., Narangajavana, J., and Yamaguchi, J. (2002). Characterization of OsSUT2 cDNA expressed before flowering stage. Rice Genet. Newslett. 19, 49–51.

    Google Scholar 

  • Okubo-Kurihara, E., Higaki, T., Kurihara, Y., Kutsuna, N., Yamaguchi, J., and Hasezawa, S. (2011). Sucrose transporter NtSUT4 from tobacco BY-2 involved in plant cell shape during miniprotoplast culture. J. Plant Res. 124, 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Payyavula, R.S., Tay, K.H., Tsai, C.J., and Harding, S.A. (2011). The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 65, 757–770.

    Article  PubMed  CAS  Google Scholar 

  • Reinders, A., Sivitz, A.B., Starker, C.G., Gantt, J.S., and Ward, J.M. (2008). Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicas. Plant Mol. Biol. 68, 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Reinders, A., Sivitz, A.B., and Ward, J.M. (2012). Evolution of plant sucrose uptake transporters (SUTs). Front. Plant Sci. 3, 00022.

    Article  CAS  Google Scholar 

  • Rennie, E.A., and Turgeon, R. (2009). A comprehensive picture of phloem loading strategies. Proc. Natl. Acad. Sci. USA 106, 14162–14167.

    Article  PubMed  CAS  Google Scholar 

  • Reidel, E.J., Rennie, E.A., Amiard V., Cheng, L., and Turgeon, R. (2009). Phloem loading strategies in three plant species that transport sugar alcohols. Plant Physiol. 149, 1601–1608.

    Article  PubMed  CAS  Google Scholar 

  • Riens, B., Lohaus, G., Heineke, D., and Heldt, H.W. (1991). Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. Plant Physiol. 97, 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier, J.W., Willmitzer, L., and Frommer, W.B. (1992). Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11, 4705–4713.

    PubMed  CAS  Google Scholar 

  • Riesmeier, J.W., Hirner, B., and Frommer, W.B. (1993). Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5, 1591–1598.

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier, J.W., Willmitzer, L., and Frommer, W.B. (1994). Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partition. EMBO J. 13, 1–7.

    PubMed  CAS  Google Scholar 

  • Russin, W.A., and Evert, R.F. (1985). Studies on the leaf of Populous deltoids (Salicaceae): ultrastructure, plasmodesmatal frequency, and solute concentrations. Am. J. Bot. 72, 1232–1247.

    Article  Google Scholar 

  • Sauer, N. (2007). Molecular physiology of higher plant sucrose transporters. FEBS Lett. 581, 2309–2317.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, S., Hulpke, S., Schulz, A., Yaron, I., Höll, J., Imlau, A., Schmitt, B., Batz, S., Wolf, S., Hedrich, R., et al., (2012). Vacuoles release sucrose via tonoplast-localized SUC4-type transporters. Plant Biol. (Stuttg) 14, 325–336.

    Article  CAS  Google Scholar 

  • Schulz, A. (2005). Role of plasmodesmata in solute loading and unloading. In Plasmodesmata, K.J. Oparka, ed. Vol. Annual Plant Reviews, Vol. 18. Blackwell, Oxford, pp. 135–161.

    Chapter  Google Scholar 

  • Schulz, A., Beyhl, D., Marten, I., Wormit, A., Neuhaus, E., Poschet, G., Buttner, M., Schneider, S., Sauer, N., and Hedrich, R. (2011). Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 68, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, G.N., Hirose, T., Gaudron, J.A., Upadhyaya, N.M., Ohsugi, R., and Furbank, R.T. (2002). Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct. Plant Biol. 29, 815–826.

    Article  CAS  Google Scholar 

  • Scofield, G.N., Aoki, N., Hirose, T., Takano, M., Jenkins C.L., and Furbank, R.T. (2007a). The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J. Exp. Bot. 58, 483–495.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, G.N., Hirose, T., Aoki, N., and Furbank, R.T. (2007b). Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J. Exp. Bot. 58, 3155–3169.

    Article  PubMed  CAS  Google Scholar 

  • Slewinski, T.L., and Braun, D.M. (2010). Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci. 178, 341–349.

    Article  CAS  Google Scholar 

  • Slewinski, T.L., Meeley, R., and Braun, D.M. (2009). Sucrose transporter1 functions in phloem loading in maize leaves. J. Exp. Bot. 60, 881–892

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, A.C., Dasgupta, K., Ajieren, E., Costilla, G., McGarry, R.C., and Ayre, B.G. (2009). Arabidopsis plants harboring a mutation in AtSUC2, encoding the predominant sucrose/proton symporter necessary for efficient phloem transport, are able to complete their life cycle and produce viable seed. Ann. Bot. 104, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Reinders, A., LaFleur, K.R., Mori, T., and Ward, J.M. (2010). Transport activity of rice sucrose transporters OsSUT1 and Os-SUT5. Plant Cell Physiol. 51, 114–122.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, T., Toyofuku, K., Matsukura, C., and Yamaguchi, J. (2001). Sugar transporters involved in flowering and grain development of rice. J. Plant Physiol. 158, 465–470.

    Article  CAS  Google Scholar 

  • Trevanion, S.J. (2002). Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate. Planta 215, 653–665.

    Article  PubMed  CAS  Google Scholar 

  • Turgeon, R. (1996). Phloem loading and plasmodemata. Trends Plant Sci. 1, 415–423.

    Article  Google Scholar 

  • Turgeon, R. (2010). The role of phloem loading reconsidered. Plant Physiol. 152, 1817–1823.

    Article  PubMed  CAS  Google Scholar 

  • Turgeon, R., and Ayre, B.G. (2005). Pathways and mechanisms of phloem loading. In Vascular Transport in Plants. Elsevier/Academic Press, N.M. Holbrook, and M.A. Zwieniecki, eds. (Oxford, UK: Elsevier/Acadermic Press), pp 45–67.

    Chapter  Google Scholar 

  • Turgeon, R., and Gowan, E. (1990). Phloem loading in Coleus blumei in the absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physiol. 94, 1244–1249.

    Article  PubMed  CAS  Google Scholar 

  • Turgeon, R., and Medville, R. (1998). The absence of phloem loading in willow leaves. Proc. Natl. Acad. Sci. USA 95, 12055–2060.

    Article  PubMed  CAS  Google Scholar 

  • van Bel, A.J.E. (1996). Interaction between sieve element and companion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physio-logical software packages in dicotyledons? J. Exp. Bot. 47, 1129–1140.

    Article  PubMed  Google Scholar 

  • van Bel, A.J.E. (2003). Phloem, a miracle of ingenuity. Plant Cell Environ. 26, 125–149.

    Article  Google Scholar 

  • van Bel, A.J.E., and Gamalei, Y. (1992). Ecophysiology of phloem loading in source leaves. Plant Cell Environ. 15, 265–270.

    Article  Google Scholar 

  • van Bel, A.J.E., and Knoblauch, M. (2000). Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Funct. Plant Biol. 27, 477–487.

    Article  Google Scholar 

  • Winder, T.L., Sun, J., Okita, T.W., and Edwards, G.E. (1998). Evidence for the occurrence of feedback inhibition of photosynthesis in rice. Plant Cell Physiol. 154, 665–677.

    Google Scholar 

  • Winter, H., Robinson, D.G., and Heldt, H.W. (1993). Subcellular volumes and metabolite concentrations in barley leaves. Planta 191, 180–190.

    Article  CAS  Google Scholar 

  • Zhang, C., and Turgeon, R. (2009). Downregulating the sucrose transporter VpSUT1 in Verbascum phoeniceum does not inhibit phloem loading. Proc. Natl. Acad. Sci. USA 106, 18849–18854.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Jeon.

About this article

Cite this article

Eom, JS., Choi, SB., Ward, J.M. et al. The mechanism of phloem loading in rice (Oryza sativa). Mol Cells 33, 431–438 (2012). https://doi.org/10.1007/s10059-012-0071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0071-9

Keywords

Navigation