Skip to main content
Log in

Retroviral infection of hES cells produces random-like integration patterns

  • Research Article
  • Published:
Molecules and Cells

Abstract

Retroviral integration provides us with a powerful tool to realize prolonged gene expressions that are often critical to gene therapy. However, the perturbation of gene regulations in host cells by viral genome integration can lead to detrimental effects, yielding cancer. The oncogenic potential of retroviruses is linked to the preference of retroviruses to integrate into genomic regions that are enriched in gene regulatory elements. To better navigate the double-edged sword of retroviral integration we need to understand how retroviruses select their favored genomic loci during infections. In this study I showed that in addition to host proteins that tether retroviral pre-integration complexes to specific genomic regions, the epigenetic architecture of host genome might strongly affect retroviral integration patterns. Specifically, retroviruses showed their characteristic integration preference in differentiated somatic cells. In contrast, retroviral infections of hES cells, which are known to display decondensed chromatin, produced random-like integration patterns lacking of strong preference for regulatory-element-rich genomic regions. Better identification of the cellular and viral factors that determine retroviral integration patterns will facilitate the design of retroviral vectors for safer use in gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang, Y.S., Gaspar-Maia, A., Lemischka, I.R., and Bernstein, E. (2011). Stem cells and reprogramming: breaking the epigenetic barrier? Trends Pharmacol. Sci. 32, 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Appelt, J.U., Giordano, F.A., Ecker, M., Roeder, I., Grund, N., Hotz-Wagenblatt, A., Opelz, G., Zeller, W.J., Allgayer, H., Fruehauf, S., et al. (2009). QuickMap: a public tool for large-scale gene therapy vector insertion site mapping and analysis. Gene Ther. 16, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Bartholomae, C.C., Arens, A., Balaggan, K.S., Yanez-Munoz, R.J., Montini, E., Howe, S.J., Paruzynski, A., Korn, B., Appelt, J.U., Macneil, A., et al. (2011). Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol. Ther. 19, 703–710.

    Article  PubMed  CAS  Google Scholar 

  • Biasco, L., Ambrosi, A., Pellin, D., Bartholomae, C., Brigida, I., Roncarolo, M.G., Di Serio, C., von Kalle, C., Schmidt, M., and Aiuti, A. (2011). Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol. Med. 3, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Cattoglio, C., Facchini, G., Sartori, D., Antonelli, A., Miccio, A., Cassani, B., Schmidt, M., von Kalle, C., Howe, S., Thrasher, A.J., et al. (2007). Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110, 1770–1778.

    Article  PubMed  CAS  Google Scholar 

  • Cattoglio, C., Pellin, D., Rizzi, E., Maruggi, G., Corti, G., Miselli, F., Sartori, D., Guffanti, A., Di Serio, C., Ambrosi, A., et al. (2010). High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116, 5507–5517.

    Article  PubMed  CAS  Google Scholar 

  • Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., and Naldini, L. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  • Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D.J., Dash, C., Bazett-Jones, D.P., Le Grice, S., McKay, R.D., Buetow, K.H., et al. (2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, A., and Cherepanov, P. (2008). The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog. 4, e1000046.

    Article  PubMed  Google Scholar 

  • Felice, B., Cattoglio, C., Cittaro, D., Testa, A., Miccio, A., Ferrari, G., Luzi, L., Recchia, A., and Mavilio, F. (2009). Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS One 4, e4571.

    Article  PubMed  Google Scholar 

  • Fisher, C.L., and Fisher, A.G. (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr. Opin. Genet. Dev. 21, 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Hematti, P., Hong, B.K., Ferguson, C., Adler, R., Hanawa, H., Sellers, S., Holt, I.E., Eckfeldt, C.E., Sharma, Y., Schmidt, M., et al. (2004). Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. 2, e423.

    Article  PubMed  Google Scholar 

  • Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13.

    Article  PubMed  Google Scholar 

  • Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

    Article  PubMed  Google Scholar 

  • Joffe, B., Leonhardt, H., and Solovei, I. (2010). Differentiation and large scale spatial organization of the genome. Curr. Opin. Genet. Dev. 20, 562–569.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, H.F., Azuara, V., Amoils, S., Spivakov, M., Terry, A., Nesterova, T., Cobb, B.S., Ramsahoye, B., Merkenschlager, M., and Fisher, A.G. (2007). The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 8, R169.

    Article  PubMed  Google Scholar 

  • Kalpana, G.V., Marmon, S., Wang, W., Crabtree, G.R., and Goff, S.P. (1994). Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266, 2002–2006.

    Article  PubMed  CAS  Google Scholar 

  • Kiem, H.P., Ironside, C., Beard, B.C., and Trobridge, G.D. (2010). A retroviral vector common integration site between leupaxin and zinc finger protein 91 (ZFP91) observed in baboon hematopoietic repopulating cells. Exp. Hematol. 38, 819–22, 822.e1–3.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Kim, N., Dong, B., Boren, D., Lee, S.A., Das Gupta, J., Gaughan, C., Klein, E.A., Lee, C., Silverman, R.H., et al. (2008). Integration site preference of xenotropic murine leukemia virusrelated virus, a new human retrovirus associated with prostate cancer. J. Virol. 82, 9964–9977.

    Article  PubMed  CAS  Google Scholar 

  • Lewinski, M.K., Yamashita, M., Emerman, M., Ciuffi, A., Marshall, H., Crawford, G., Collins, F., Shinn, P., Leipzig, J., Hannenhalli, S., et al. (2006). Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, e60.

    Article  PubMed  Google Scholar 

  • Li, Y., Powell, S., Brunette, E., Lebkowski, J., and Mandalam, R. (2005). Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol. Bioeng. 91, 688–698.

    Article  PubMed  CAS  Google Scholar 

  • Lim, K.I., Klimczak, R., Yu, J.H., and Schaffer, D.V. (2010). Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc. Natl. Acad. Sci. USA 107, 12475–12480.

    Article  PubMed  CAS  Google Scholar 

  • Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872.

    Article  PubMed  CAS  Google Scholar 

  • Mattout, A., and Meshorer, E. (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr. Opin. Cell Biol. 22, 334–341.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R.S., Beitzel, B.F., Schroder, A.R., Shinn, P., Chen, H., Berry, C.C., Ecker, J.R., and Bushman, F.D. (2004). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234.

    Article  PubMed  Google Scholar 

  • Orkin, S.H., and Hochedlinger, K. (2011). Chromatin connections to pluripotency and cellular reprogramming. Cell 145, 835–850.

    Article  PubMed  CAS  Google Scholar 

  • Schroder, A.R., Shinn, P., Chen, H., Berry, C., Ecker, J.R., and Bushman, F. (2002). HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Li, Y., Crise, B., and Burgess, S.M. (2003). Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y.W., Denham, J., and Thies, R.S. (2006). Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev. 15, 943–952.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-il Lim.

About this article

Cite this article

Lim, Ki. Retroviral infection of hES cells produces random-like integration patterns. Mol Cells 33, 525–531 (2012). https://doi.org/10.1007/s10059-012-0038-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0038-x

Keywords

Navigation