Skip to main content
Log in

Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis

  • Minireview
  • Published:
Molecules and Cells

Abstract

Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramczyk, O., Rainey, M.A., Barnes, R., Martin, L., and Dalby, K.N. (2007). Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding. Biochemistry 46, 9174–9186.

    Article  PubMed  CAS  Google Scholar 

  • Adachi, M., Fukuda, M., and Nishida, E. (1999). Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 18, 5347–5358.

    Article  PubMed  CAS  Google Scholar 

  • Adachi, M., Fukuda, M., and Nishida, E. (2000). Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell Biol. 148, 849–856.

    Article  PubMed  CAS  Google Scholar 

  • Amor-Mahjoub, M., Suppini, J.P., Gomez-Vrielyunck, N., and Ladjimi, M. (2006). The effect of the hexahistidine-tag in the oligomerization of HSC70 constructs. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 844, 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Baburajendran, N., Jauch, R., Tan, C.Y., Narasimhan, K., and Kolatkar, P.R. (2011). Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers. Nucleic Acids Res. 39, 8213–8222.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, A., Hu, J., and Goss, D.J. (2006). Thermodynamics of protein-protein interactions of cMyc, Max, and Mad: effect of polyions on protein dimerization. Biochemistry 45, 2333–2338.

    Article  PubMed  CAS  Google Scholar 

  • Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.M., and Wilson, K.P. (1999). The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation. Structure 7, 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Aparicio, C., Torres, J., and Pulido, R. (1999). A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J. Cell Biol. 147, 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Burack, W.R., and Shaw, A.S. (2005). Live Cell Imaging of ERK and MEK: simple binding equilibrium explains the regulated nucleocytoplasmic distribution of ERK. J. Biol. Chem. 280, 3832–3837.

    Article  PubMed  CAS  Google Scholar 

  • Cacace, A.M., Michaud, N.R., Therrien, M., Mathes, K., Copeland, T., Rubin, G.M., and Morrison, D.K. (1999). Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell. Biol. 19, 229–240.

    PubMed  CAS  Google Scholar 

  • Callaway, K.A., Rainey, M.A., Riggs, A.F., Abramczyk, O., and Dalby, K.N. (2006). Properties and regulation of a transiently assembled ERK2.Ets-1 signaling complex. Biochemistry 45, 13719–13733.

    CAS  Google Scholar 

  • Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., and Goldsmith, E.J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.

    Article  PubMed  CAS  Google Scholar 

  • Casar, B., Sanz-Moreno, V., Yazicioglu, M.N., Rodriguez, J., Berciano, M.T., Lafarga, M., Cobb, M.H., and Crespo, P. (2007). Mxi2 promotes stimulus-independent ERK nuclear translocation. EMBO J. 26, 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Casar, B., Pinto, A., and Crespo, P. (2008). Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol. Cell 31, 708–721.

    Article  PubMed  CAS  Google Scholar 

  • Casar, B., Arozarena, I., Sanz-Moreno, V., Pinto, A., Agudo-Ibanez, L., Marais, R., Lewis, R.E., Berciano, M.T., and Crespo, P. (2009). Ras subcellular localization defines extracellular signalregulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol. Cell. Biol. 29, 1338–1353.

    Article  PubMed  CAS  Google Scholar 

  • Caunt, C.J., Rivers, C.A., Conway-Campbell, B.L., Norman, M.R., and McArdle, C.A. (2008). Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J. Biol. Chem. 283, 6241–6252.

    Article  PubMed  CAS  Google Scholar 

  • Chacko, B.M., Qin, B., Correia, J.J., Lam, S.S., de Caestecker, M. P., and Lin, K. (2001). The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat. Struct. Biol. 8, 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Chatel, G., and Fahrenkrog, B. (2011). Nucleoporins: leaving the nuclear pore complex for a successful mitosis. Cell Signal. 23, 1555–1562.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary, A., King, W.G., Mattaliano, M.D., Frost, J.A., Diaz, B., Morrison, D.K., Cobb, M.H., Marshall, M.S., and Brugge, J.S. (2000). Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr. Biol. 10, 551–554.

    Article  PubMed  CAS  Google Scholar 

  • Chuderland, D., Marmor, G., Shainskaya, A., and Seger, R. (2008). Calcium-mediated interactions regulate the subcellular localization of extracellular signal-regulated kinases (ERKs). J. Biol. Chem. 283, 11176–11188.

    Article  PubMed  CAS  Google Scholar 

  • Coles, L.C., and Shaw, P.E. (2002). PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 21, 2236–2244.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, G., Vigliotta, G., Cafieri, A., Trencia, A., Andalo, P., Oriente, F., Miele, C., Caruso, M., Formisano, P., and Beguinot, F. (1999). PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 18, 4409–4415.

    Article  PubMed  CAS  Google Scholar 

  • Correia, J.J., Chacko, B.M., Lam, S.S., and Lin, K. (2001). Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization. Biochemistry 40, 1473–1482.

    Article  PubMed  CAS  Google Scholar 

  • Cussac, D., Vidal, M., Leprince, C., Liu, W.Q., Cornille, F., Tiraboschi, G., Roques, B.P., and Garbay, C. (1999). A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J. 13, 31–38.

    PubMed  CAS  Google Scholar 

  • Derijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R.J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  • Drewett, V., Muller, S., Goodall, J., and Shaw, P.E. (2000). Dimer formation by ternary complex factor ELK-1. J. Biol. Chem. 275, 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  • Eblen, S.T., Catling, A.D., Assanah, M.C., and Weber, M.J. (2001). Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol. Cell. Biol. 21, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Eblen, S.T., Slack-Davis, J.K., Tarcsafalvi, A., Parsons, J.T., Weber, M.J., and Catling, A.D. (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol. Cell. Biol. 24, 2308–2317.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E.L., Saxton, J., Shelton, S.J., Begitt, A., Holliday, N.D., Hipskind, R.A., and Shaw, P.E. (2011). Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1. Nucleic Acids Res. 39, 6390–6402.

    Article  PubMed  CAS  Google Scholar 

  • Fanger, G.R., Gerwins, P., Widmann, C., Jarpe, M.B., and Johnson, G.L. (1997). MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, M.A., Tian, J., and Perlmutter, R.M. (2000). Membrane localization of Raf assists engagement of downstream effectors. J. Biol. Chem. 275, 31318–31324.

    Article  PubMed  CAS  Google Scholar 

  • Formstecher, E., Ramos, J.W., Fauquet, M., Calderwood, D.A., Hsieh, J.C., Canton, B., Nguyen, X.T., Barnier, J.V., Camonis, J., Ginsberg, M.H., et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1, 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Fujioka, A., Terai, K., Itoh, R.E., Aoki, K., Nakamura, T., Kuroda, S., Nishida, E., and Matsuda, M. (2006). Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281, 8917–8926.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M., Gotoh, I., Gotoh, Y., and Nishida, E. (1996). Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J. Biol. Chem. 271, 20024–20028.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M., Gotoh, Y., and Nishida, E. (1997). Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Lee, J.D., Bibbs, L., and Ulevitch, R.J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.

    Article  PubMed  CAS  Google Scholar 

  • Hoofnagle, A.N., Resing, K.A., Goldsmith, E.J., and Ahn, N.G. (2001). Changes in protein conformational mobility upon activation of extracellular regulated protein kinase-2 as detected by hydrogen exchange. Proc. Natl. Acad. Sci. USA 98, 956–961.

    Article  PubMed  CAS  Google Scholar 

  • Horgan, A.M., and Stork, P.J. (2003). Examining the mechanism of Erk nuclear translocation using green fluorescent protein. Exp. Cell Res. 285, 208–220.

    Article  PubMed  CAS  Google Scholar 

  • Jaaro, H., Rubinfeld, H., Hanoch, T., and Seger, R. (1997). Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc. Natl. Acad. Sci. USA 94, 3742–3747.

    Article  PubMed  CAS  Google Scholar 

  • Jain, N., Zhang, T., Fong, S.L., Lim, C.P., and Cao, X. (1998). Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK). Oncogene 17, 3157–3167.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K.C., Rhee, H.S., Park, C.H., and Yang, C.H. (2005). Determination of the dissociation constants for recombinant c-Myc, Max, and DNA complexes: the inhibitory effect of linoleic acid on the DNA-binding step. Biochem. Biophys. Res. Commun. 334, 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Kaihara, A., and Umezawa, Y. (2008). Genetically encoded bioluminescent indicator for ERK2 dimer in living cells. Chem. Asian J. 3, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Kaoud, T.S., Devkota, A.K., Harris, R., Rana, M.S., Abramczyk, O., Warthaka, M., Lee, S., Girvin, M.E., Riggs, A.F., and Dalby, K.N. (2011). Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15. Biochemistry 50, 4568–4578.

    Article  PubMed  CAS  Google Scholar 

  • Khokhlatchev, A.V., Canagarajah, B., Wilsbacher, J., Robinson, M., Atkinson, M., Goldsmith, E., and Cobb, M.H. (1998). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Kitsberg, D., Formstecher, E., Fauquet, M., Kubes, M., Cordier, J., Canton, B., Pan, G., Rolli, M., Glowinski, J., and Chneiweiss, H. (1999). Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFalpha-induced apoptosis. J. Neurosci. 19, 8244–8251.

    PubMed  CAS  Google Scholar 

  • Kohler, J.J., Metallo, S.J., Schneider, T.L., and Schepartz, A. (1999). DNA specificity enhanced by sequential binding of protein monomers. Proc. Natl. Acad. Sci. USA 96, 11735–11739.

    Article  PubMed  CAS  Google Scholar 

  • Kortum, R.L., Johnson, H.J., Costanzo, D.L., Volle, D.J., Razidlo, G.L., Fusello, A.M., Shaw, A.S., and Lewis, R.E. (2006). The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence. Mol. Cell. Biol. 26, 2202–2214.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, M., Doody, J., and Massague, J. (1997). Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389, 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, M., Doody, J., Timokhina, I., and Massague, J. (1999). A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 13, 804–816.

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis, J.M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E.A., Ahmad, M.F., Avruch, J., and Woodgett, J.R. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Lamber, E.P., Vanhille, L., Textor, L.C., Kachalova, G.S., Sieweke, M.H., and Wilmanns, M. (2008). Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO J. 27, 2006–2017.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.A. (1992). Dimeric transcription factor families: it takes two to tango but who decides on partners and the venue? J. Cell Sci. 103( Pt 1), 9–14.

    PubMed  CAS  Google Scholar 

  • Lee, J.D., Ulevitch, R.J., and Han, J. (1995). Primary structure of BMK1: a new mammalian map kinase. Biochem. Biophys. Res. Commun. 213, 715–724.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Warthaka, M., Yan, C., Kaoud, T.S., Piserchio, A., Ghose, R., Ren, P., and Dalby, K.N. (2011a). A model of a MAPK* substrate complex in an active conformation: a computational and experimental approach. PLoS One 6, e18594.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Warthaka, M., Yan, C., Kaoud, T.S., Ren, P., and Dalby, K.N. (2011b). Examining docking interactions on ERK2 with modular peptide substrates. Biochemistry 50, 9500–9510.

    Article  PubMed  CAS  Google Scholar 

  • Lenormand, P., Sardet, C., Pages, G., L’Allemain, G., Brunet, A., and Pouyssegur, J. (1993). Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell Biol. 122, 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  • Lenormand, P., Brondello, J.M., Brunet, A., and Pouyssegur, J. (1998). Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142, 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Lidke, D.S., Huang, F., Post, J.N., Rieger, B., Wilsbacher, J., Thomas, J.L., Pouyssegur, J., Jovin, T.M., and Lenormand, P. (2010). ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation. J. Biol. Chem. 285, 3092–3102.

    Article  PubMed  CAS  Google Scholar 

  • Mandl, M., Slack, D.N., and Keyse, S.M. (2005). Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol. Cell. Biol. 25, 1830–1845.

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi, Y., Fukuda, M., and Nishida, E. (2001). Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J. Biol. Chem. 276, 41755–41760.

    Article  PubMed  CAS  Google Scholar 

  • Mo, Y., Vaessen, B., Johnston, K., and Marmorstein, R. (2000). Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nat. Struct. Biol. 7, 292–297.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, D.K., and Davis, R.J. (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118.

    Article  PubMed  CAS  Google Scholar 

  • Muller, J., Ory, S., Copeland, T., Piwnica-Worms, H., and Morrison, D.K. (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8, 983–993.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, A.K., Vadhammar, K., and Nanberg, E. (2000). Activation and protein kinase C-dependent nuclear accumulation of ERK in differentiating human neuroblastoma cells. Exp. Cell Res. 256, 454–467.

    Article  PubMed  CAS  Google Scholar 

  • Pages, G., Lenormand, P., L’Allemain, G., Chambard, J.C., Meloche, S., and Pouyssegur, J. (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90, 8319–8323.

    Article  PubMed  CAS  Google Scholar 

  • Patel, L.R., Curran, T., and Kerppola, T.K. (1994). Energy transfer analysis of Fos-Jun dimerization and DNA binding. Proc. Natl. Acad. Sci. USA 91, 7360–7364.

    Article  PubMed  CAS  Google Scholar 

  • Payne, D.M., Rossomando, A.J., Martino, P., Erickson, A.K., Her, J.H., Shabanowitz, J., Hunt, D.F., Weber, M.J., and Sturgill, T.W. (1991). Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885–892.

    PubMed  CAS  Google Scholar 

  • Philipova, R., and Whitaker, M. (2005). Active ERK1 is dimerized in vivo: bisphosphodimers generate peak kinase activity and monophosphodimers maintain basal ERK1 activity. J. Cell Sci. 118, 5767–5776.

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur, J., Volmat, V., and Lenormand, P. (2002). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol. 64, 755–763.

    Article  PubMed  CAS  Google Scholar 

  • Pufall, M.A., and Graves, B.J. (2002). Autoinhibitory domains: modular effectors of cellular regulation. Annu. Rev. Cell Dev. Biol. 18, 421–462.

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan, K., Edwards, J.S., Lidke, D.S., Jovin, T.M., Wilson, B.S., and Oliver, J.M. (2009). Sensitivity analysis predicts that the ERK-pMEK interaction regulates ERK nuclear translocation. IET Syst. Biol. 3, 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, M.A., Callaway, K., Barnes, R., Wilson, B., and Dalby, K.N. (2005). Proximity-induced catalysis by the protein kinase ERK2. J. Am. Chem. Soc. 127, 10494–10495.

    Article  PubMed  CAS  Google Scholar 

  • Reiser, V., Ammerer, G., and Ruis, H. (1999). Nucleocytoplasmic traffic of MAP kinases. Gene Expr. 7, 247–254.

    PubMed  CAS  Google Scholar 

  • Robbins, D.J., and Cobb, M.H. (1992). Extracellular signal-regulated kinases 2 autophosphorylates on a subset of peptides phosphorylated in intact cells in response to insulin and nerve growth factor: analysis by peptide mapping. Mol. Biol. Cell 3, 299–308.

    PubMed  CAS  Google Scholar 

  • Robbins, D.J., Zhen, E., Owaki, H., Vanderbilt, C.A., Ebert, D., Geppert, T.D., and Cobb, M.H. (1993). Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 268, 5097–5106.

    PubMed  CAS  Google Scholar 

  • Robinson, F.L., Whitehurst, A.W., Raman, M., and Cobb, M.H. (2002). Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1. J. Biol. Chem. 277, 14844–14852.

    Article  PubMed  CAS  Google Scholar 

  • Rosette, C., and Karin, M. (1996). Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274, 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  • Rosseland, C.M., Wierod, L., Oksvold, M.P., Werner, H., Ostvold, A.C., Thoresen, G.H., Paulsen, R.E., Huitfeldt, H.S., and Skarpen, E. (2005). Cytoplasmic retention of peroxide-activated ERK provides survival in primary cultures of rat hepatocytes. Hepatology 42, 200–207.

    Article  PubMed  CAS  Google Scholar 

  • Roux, P.P., and Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344.

    Article  PubMed  CAS  Google Scholar 

  • Rubinfeld, H., Hanoch, T., and Seger, R. (1999). Identification of a cytoplasmic-retention sequence in ERK2. J. Biol. Chem. 274, 30349–30352.

    Article  PubMed  CAS  Google Scholar 

  • Samarakoon, R., and Higgins, P.J. (2003). Pp60c-src mediates ERK activation/nuclear localization and PAI-1 gene expression in response to cellular deformation. J. Cell Physiol. 195, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa, S., Ozaki, Y., Fujita, K., and Kuroda, S. (2005). Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7, 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., and Muller, G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375.

    Article  PubMed  Google Scholar 

  • Seldeen, K.L., McDonald, C.B., Deegan, B.J., and Farooq, A. (2008). Thermodynamic analysis of the heterodimerization of leucine zippers of Jun and Fos transcription factors. Biochem. Biophys. Res. Commun. 375, 634–638.

    Article  PubMed  CAS  Google Scholar 

  • Sharrocks, A.D. (2001). The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Skarpen, E., Flinder, L.I., Rosseland, C.M., Orstavik, S., Wierod, L., Oksvold, M.P., Skalhegg, B.S., and Huitfeldt, H.S. (2008). MEK1 and MEK2 regulate distinct functions by sorting ERK2 to different intracellular compartments. FASEB J. 22, 466–476.

    Article  PubMed  CAS  Google Scholar 

  • Tanimura, S., Nomura, K., Ozaki, K., Tsujimoto, M., Kondo, T., and Kohno, M. (2002). Prolonged nuclear retention of activated extra-cellular signal-regulated kinase 1/2 is required for hepatocyte growth factor-induced cell motility. J. Biol. Chem. 277, 28256–28264.

    Article  PubMed  CAS  Google Scholar 

  • Tanoue, T., Adachi, M., Moriguchi, T., and Nishida, E. (2000). A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110–116.

    Article  PubMed  CAS  Google Scholar 

  • Torii, S., Kusakabe, M., Yamamoto, T., Maekawa, M., and Nishida, E. (2004). Sef is a spatial regulator for Ras/MAP kinase signaling. Dev. Cell 7, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Vantaggiato, C., Formentini, I., Bondanza, A., Bonini, C., Naldini, L., and Brambilla, R. (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J. Biol. 5, 14.

    PubMed  Google Scholar 

  • Volmat, V., and Pouyssegur, J. (2001). Spatiotemporal regulation of the p42/p44 MAPK pathway. Biol. Cell 93, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Wasylyk, C., Gutman, A., Nicholson, R., and Wasylyk, B. (1991). The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 10, 1127–1134.

    PubMed  CAS  Google Scholar 

  • Wente, S.R. (2000). Gatekeepers of the nucleus. Science 288, 1374–1377.

    Article  PubMed  CAS  Google Scholar 

  • Whitehurst, A.W., Wilsbacher, J.L., You, Y., Luby-Phelps, K., Moore, M.S., and Cobb, M.H. (2002). ERK2 enters the nucleus by a carrier-independent mechanism. Proc. Natl. Acad. Sci. USA 99, 7496–7501.

    Article  PubMed  CAS  Google Scholar 

  • Whitehurst, A.W., Robinson, F.L., Moore, M.S., and Cobb, M.H. (2004). The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J. Biol. Chem. 279, 12840–12847.

    Article  PubMed  CAS  Google Scholar 

  • Wilsbacher, J.L., Juang, Y.C., Khokhlatchev, A.V., Gallagher, E., Binns, D., Goldsmith, E.J., and Cobb, M.H. (2006). Characterization of mitogen-activated protein kinase (MAPK) dimers. Biochemistry 45, 13175–13182.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, I., Rubinfeld, H., Yoon, S., Marmor, G., Hanoch, T., and Seger, R. (2001). Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J. Biol. Chem. 276, 24490–24497.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., and Filutowicz, M. (1999). Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim. Pol. 46, 591–599.

    PubMed  CAS  Google Scholar 

  • Wu, J.W., Hu, M., Chai, J., Seoane, J., Huse, M., Li, C., Rigotti, D.J., Kyin, S., Muir, T.W., Fairman, R., et al. (2001). Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol. Cell 8, 1277–1289.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Makris, C., Su, B., Li, E., Yang, J., Nemerow, G.R., and Karin, M. (2000). MEK kinase 1 is critically required for c-Jun Nterminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl. Acad. Sci. USA 97, 5243–5248.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., Pallero, M.A., Gupta, K., Chang, P., Ware, M.F., Witke, W., Kwiatkowski, D.J., Lauffenburger, D.A., Murphy-Ullrich, J.E., and Wells, A. (1998). EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. J. Cell Sci. 111(Pt 5), 615–624.

    PubMed  CAS  Google Scholar 

  • Yazicioglu, M.N., Goad, D.L., Ranganathan, A., Whitehurst, A.W., Goldsmith, E.J., and Cobb, M.H. (2007). Mutations in ERK2 binding sites affect nuclear entry. J. Biol. Chem. 282, 28759–28767.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S., and Seger, R. (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44.

    Article  PubMed  CAS  Google Scholar 

  • Yujiri, T., Ware, M., Widmann, C., Oyer, R., Russell, D., Chan, E., Zaitsu, Y., Clarke, P., Tyler, K., Oka, Y., et al. (2000). MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc. Natl. Acad. Sci. USA 97, 7272–7277.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Wang, W., Hayashi, Y., Jester, J.V., Birk, D.E., Gao, M., Liu, C.Y., Kao, W.W., Karin, M., and Xia, Y. (2003). A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 22, 4443–4454.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Bao, Z.Q., and Dixon, J.E. (1995). Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12665–12669.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunbae Lee.

About this article

Cite this article

Lee, S., Bae, Y.S. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Mol Cells 33, 325–334 (2012). https://doi.org/10.1007/s10059-012-0023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0023-4

Keywords

Navigation