Skip to main content
Log in

Lysophosphatidic acid induces neurite retraction in differentiated neuroblastoma cells via GSK-3β activation

  • Published:
Molecules and Cells

Abstract

Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects, including rapid neurite retraction and cell migration. Alterations in cell morphology, including neurite retraction, in neurodegenerative disorders such as Alzheimer’s disease involve hyperphosphorylation of the cytoskeletal protein tau. Since LPA has been shown to induce neurite retraction in various cultured neural cells and the detailed underlying molecular mechanisms have not yet been elucidated, we investigated whether LPA induced neurite retraction through taumediated signaling pathways in differentiated neuroblastoma cells. When Neuro2a cells differentiated with retinoic acid (RA) were exposed to LPA, cells exhibited neurite retraction in a time-dependent manner. The retraction of neurites was accompanied by the phosphorylation of tau. The LPA-induced neurite retraction and tau phosphorylation in differentiated Neuro2a cells were significantly abolished by the glycogen synthase kinase-3β (GSK-3β) inhibitor lithium chloride. Interestingly, the LPA-stimulated tau phosphorylation and neurite retraction were markedly prevented by the administration of H89, an inhibitor of both cyclic-AMP dependent protein kinase (PKA) and cyclic-AMP response element-binding protein (CREB). Transfection of the dominant-negative CREBs, K-CREB and A-CREB, failed to prevent LPA-induced tau phosphorylation and neurite retraction in differentiated Neuro2a cells. Taken together, these results suggest that GSK-3β and PKA, rather than CREB, play important roles in tau phosphorylation and neurite retraction in LPA-stimulated differentiated Neuro2a cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anliker, B., and Chun, J. (2004). Cell surface receptors in lysophospholipid signaling. Semin. Cell Dev. Biol. 15, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, R.V., Shanley, J., Correll, M.., Fieles, W.E., Keith, R.A., Scott, C.W., and Lee, C.M. (2000). Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. USA 97, 11074–11079.

    Article  PubMed  CAS  Google Scholar 

  • Boer, U., Eglins, J., Krause, D., Schnell, S., Schofl, C., and Knepel, W. (2007). Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain. Biochem. J. 408, 69–77.

    Article  PubMed  Google Scholar 

  • Cai, X., Li, M., Vrana, J., and Schaller, M.D. (2006). Glycogen synthase kinase — and extracellular signal-regulated kinasedependent phosphorylation of paxillin regulates cytoskeletal rearrangement. Mol. Cell. Biol. 26, 2857–2868.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J. (2005). Lysophospholipids in the nervous system. Prostaglandins Other Lipid Mediat. 77, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J., Goetzl, E.J., Hla, T., Igarashi, Y., Lynch, K.R., Moolenaar, W., Pyne, S., and Tigyi, G. (2002). International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev. 54, 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Contos, J.J., Ishii, I., and Chun, J. (2000). Lysophosphatidic acid receptors. Mol. Pharmacol. 58, 1188–1196.

    PubMed  CAS  Google Scholar 

  • Evans, D.B., Rank, K.B., Bhattacharya, K., Thomsen, D.R., Gurney, M.E., and Sharma, S.K. (2000). Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau’s ability to promote microtubule assembly. J. Biol. Chem. 275, 24977–24983.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, N. (2004). LPA in neural cell development. J. Cell Biochem. 92, 993–1003.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, N., and Chun, J. (2001). The LPA receptors. Prostaglandins 64, 21–32.

    PubMed  CAS  Google Scholar 

  • Fukushima, N., Weiner, J.A., Kaushal, D., Contos, J.J., Rehen, S.K., Kingsbury, M.A., Kim, K.Y., and Chun, J. (2002). Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol. Cell. Neurosci. 20, 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Ginty, D.D., Glowacka, D., Bader, D.S., Hidaka, H., and Wagner, J.A. (1991). Induction of immediate early genes by Ca2+ influx requires cAMP-dependent protein kinase in PC12 cells. J. Biol. Chem. 266, 17454–17458.

    PubMed  CAS  Google Scholar 

  • Goetzl, E.J., and An, S. (1999). A subfamily of G protein-coupled cellular receptors for lysophospholipids and lysosphingolipids. Adv. Exp. Med. Biol. 469, 259–264.

    PubMed  CAS  Google Scholar 

  • Greenberg, S.G., and Davies, P. (1990). A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc. Natl. Acad. Sci. USA 87, 5827–5831.

    Article  PubMed  CAS  Google Scholar 

  • Grimes, C.A., and Jope, R.S. (2001). CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J. Neurochem. 78, 1219–1232.

    Article  PubMed  CAS  Google Scholar 

  • Hartigan, J.A., and Johnson, G.V. (1999). Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J. Biol. Chem. 274, 21395–21401.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Chen, J., Wang, L., and Ivashkiv, L.B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J. Leukoc. Biol. 82, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Jalink, K., Eichholtz, T., Postma, F.R., van Corven, E.J., and Moolenaar, W.H. (1993). Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ. 4, 247–255.

    PubMed  CAS  Google Scholar 

  • Klein, P.S., and Melton, D.A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, Y.J., Sun, Y., Kim, N.H., and Huh, S.O. (2009). Phosphorylation of CREB, a cyclic AMP responsive element binding protein, contributes partially to lysophosphatidic acid-induced fibroblast cell proliferation. Biochem. Biophys. Res. Commun. 380, 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.W., Nam, J.S., Park, Y.K., Choi, H.K., Lee, J.H., Kim, N.H., Cho, J., Song, D.K., Suh, H.W., Lee, J., et al. (2003). Lysophosphatidic acid stimulates CREB through mitogen- and stressactivated protein kinase-1. Biochem. Biophys. Res. Commun. 305, 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.W., Rivera, R., Gardell, S., Dubin, A.E., and Chun, J. (2006). GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J. Biol. Chem. 281, 23589–23597.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Lu, F., Tian, Q., Yang, Y., Wang, Q., and Wang, J.Z. (2006). Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyperphosphorylation in rat hippocampus slices in culture. J. Neural Transm. 113, 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Mandell, J.W., and Banker, G.A. (1996). Microtubule-associated proteins, phosphorylation gradients, and the establishment of neuronal polarity. Perspect. Dev. Neurobiol. 4, 125–135.

    PubMed  CAS  Google Scholar 

  • Mao, A.J., Bechberger, J., Lidington, D., Galipeau, J., Laird, D.W., and Naus, C.C. (2000). Neuronal differentiation and growth control of neuro-2a cells after retroviral gene delivery of connexin43. J. Biol. Chem. 275, 34407–34414.

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar, W.H. (1999). Bioactive lysophospholipids and their G protein-coupled receptors. Exp. Cell Res. 253, 230–238.

    Article  PubMed  CAS  Google Scholar 

  • Nam, J.H., Shin, D.H., Min, J.E., Ye, S.K., Jeon, J.H., and Kim, S.J. (2010). Ca2+ signaling induced by sphingosine 1-phosphate and lysophosphatidic acid in mouse B cells. Mol. Cells 29, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Saito, S. (1997). Effects of lysophosphatidic acid on primary cultured chick neurons. Neurosci. Lett. 229, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, S., Sayas, C.L., Lim, F., Diaz-Nido, J., Avila, J., and Wandosell, F. (2001). The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. J. Neurochem. 78, 468–481.

    Article  PubMed  CAS  Google Scholar 

  • Sayas, C.L., Moreno-Flores, M.T., Avila, J., and Wandosell, F. (1999). The neurite retraction induced by lysophosphatidic acid increases Alzheimer’s disease-like Tau phosphorylation. J. Biol. Chem. 274, 37046–37052.

    Article  PubMed  CAS  Google Scholar 

  • Sayas, C.L., Avila, J., and Wandosell, F. (2002a). Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta 1582, 144–153.

    PubMed  CAS  Google Scholar 

  • Sayas, C.L., Avila, J., and Wandosell, F. (2002b). Glycogen synthase kinase-3 is activated in neuronal cells by Galpha12 and Galpha13 by Rho-independent and Rho-dependent mechanisms. J. Neurosci. 22, 6863–6875.

    PubMed  CAS  Google Scholar 

  • Sayas, C.L., Ariaens, A., Ponsioen, B., and Moolenaar, W.H. (2006). GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol. Biol. Cell 17, 1834–1844.

    Article  PubMed  CAS  Google Scholar 

  • Stambolic, V., Ruel, L., and Woodgett, J.R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, B., Mandelkow, E.M., Biernat, J., Gustke, N., Meyer, H.E., Schmidt, B., Mieskes, G., Soling, H.D., Drechsel, D., Kirschner, M.W., et al. (1990). Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2(+)-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9, 3539–3544.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Iqbal, K., Trenkner, E., Liu, D.J., and Grundke-Iqbal, I. (1995). Abnormally phosphorylated tau in SY5Y human neuroblastoma cells. FEBS Lett. 360, 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Tatebayashi, Y., Planel, E., Chui, D.H., Sato, S., Miyasaka, T., Sahara, N., Murayama, M., Kikuchi, N., Yoshioka, K., Rivka, R., et al. (2006). c-jun N-terminal kinase hyperphos-phorylates R406W tau at the PHF-1 site during mitosis. FASEB J. 20, 762–764.

    PubMed  CAS  Google Scholar 

  • Thomson, S., Clayton, A.L., Hazzalin, C.A., Rose, S., Barratt, M.J., and Mahadevan, L.C. (1999). The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793.

    Article  PubMed  CAS  Google Scholar 

  • Tigyi, G., and Miledi, R. (1992). Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J. Biol. Chem. 267, 21360–21367.

    PubMed  CAS  Google Scholar 

  • Yanagida, K., Ishii, S., Hamano, F., Noguchi, K., and Shimizu, T. (2007). LPA4/p2y9/GPR23 mediates rho-dependent morphological changes in a rat neuronal cell line. J. Biol. Chem. 282, 5814–5824.

    Article  PubMed  CAS  Google Scholar 

  • Ye, X., Ishii, I., Kingsbury, M.A., and Chun, J. (2002). Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim. Biophys. Acta 1585, 108–113.

    PubMed  CAS  Google Scholar 

  • Zhong, S., Jansen, C., She, Q.B., Goto, H., Inagaki, M., Bode, A.M., Ma, W.Y., and Dong, Z. (2001). Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J. Biol. Chem. 276, 33213–33219.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Oh Huh.

About this article

Cite this article

Sun, Y., Kim, NH., Yang, H. et al. Lysophosphatidic acid induces neurite retraction in differentiated neuroblastoma cells via GSK-3β activation. Mol Cells 31, 483–489 (2011). https://doi.org/10.1007/s10059-011-1036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-1036-0

Keywords

Navigation