Skip to main content
Log in

Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor

  • Published:
Molecules and Cells

Abstract

Protein disulfide isomerase (PDI) is a thiodisulfide oxidoreductase that catalyzes the formation, reduction and rearrangement of disulfide bonds in proteins of eukaryotes. The classical PDI has a signal peptide, two CXXCcontaining thioredoxin catalytic sites (a,a′), two noncatalytic thioredoxin fold domains (b,b′), an acidic domain (c) and a C-terminal endoplasmic reticulum (ER) retention signal. Although PDI resides in the ER where it mediates the folding of nascent polypeptides of the secretory pathway, we recently showed that PDI5 of Arabidopsis thaliana chaperones and inhibits cysteine proteases during trafficking to vacuoles prior to programmed cell death of the endothelium in developing seeds. Here we describe Arabidopsis PDI2, which shares a primary structure similar to that of classical PDI. Recombinant PDI2 is imported into ER-derived microsomes and complements the E. coli protein-folding mutant, dsbA. PDI2 interacted with proteins in both the ER and nucleus, including ER-resident protein folding chaperone, BiP1, and nuclear embryo transcription factor, MEE8. The PDI2-MEE8 interaction was confirmed to occur in vitro and in vivo. Transient expression of PDI2-GFP fusions in mesophyll protoplasts resulted in labeling of the ER, nucleus and vacuole. PDI2 is expressed in multiple tissues, with relatively high expression in seeds and root tips. Immunoelectron microscopy with GFP- and PDI2-specific antisera on transgenic seeds (PDI2-GFP) and wild type roots demonstrated that PDI2 was found in the secretory pathway (ER, Golgi, vacuole, cell wall) and the nuclei. Our results indicate that PDI2 mediates protein folding in the ER and has new functional roles in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adikesavan, A., Karani, U., Emmanual, J., and Anil, K. (2008). Overlapping signal sequences control nuclear localization and endoplasmic reticulum retention of GRP58. Biochem. Biophys. Res. Commun. 377, 407–412.

    Article  PubMed  CAS  Google Scholar 

  • Amaya, Y., Nakai, T., Komaru, K., Tsuneki, M., and Miura, S. (2008). Cleavage of the ER-targeting signal sequence of parathyroid hormone-related protein is cell-type-specific and regulated in cis by its nuclear localization signal. J. Biochem. 143, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D.J., and Roman, A. (1993). The anomalous electrophoretic behavior of the human papillomavirus type 16 E7 protein is due to the high content of acidic amino acid residues. Biochem. Biophys. Res. Commun. 192, 1380–1387.

    Article  PubMed  CAS  Google Scholar 

  • Asally, M., and Yoneda, Y. (2005). Beta-catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1). Exp. Cell. Res. 308, 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Aslund, F., and Beckwith, J. (1999). Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96, 751–753.

    Article  PubMed  CAS  Google Scholar 

  • Battey, N.H., James, N.C., Greenland, A.J., and Brownlee, C. (1999). Exocytosis and Endocytosis. Plant Cell 11, 643–659.

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 30. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

  • Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell. Biol. 2, 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann, A., Weidtkamp-Peters, S., Seidel, C.A., and Simon, R. (2010). Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol. 152, 166–176.

    Article  PubMed  CAS  Google Scholar 

  • Cheug, P.Y., and Churchich, J.E. (1999). Recognition of protein substrates by protein-disulfide isomerase A sequence of the b′ domain responds to substrate binding. J. Biol. Chem. 274, 32757–32761.

    Article  Google Scholar 

  • Christopher, D.A., Borsics, T., Yuen, C.Y., Ullmer, W., Andème-Ondzighi, C., Andres, M.A., Kang, B.H., and Staehelin, L.A. (2007). The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol. 7, 1471–2229.

    Article  Google Scholar 

  • Chun, L., Kawakami, A., and Christopher, D.A. (2001). Phytochrome A mediates blue light and UV-A dependent chloroplast gene transcription in green leaves. Plant Physiol. 125, 1957–1966.

    Article  PubMed  CAS  Google Scholar 

  • Clive, D.R., and Greene, J.J. (1996). Cooperation of protein disulfide isomerase and redox environment in the regulation of NF-κB and AP1 binding to DNA. Cell Biochem. Funct. 14, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Clough, S., and Bent, A. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  • Cokol, M., Nair, R., and Rost, B. (2000). Finding nuclear localisation signals. EMBO Rep. 1, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Couet, J., De Bernard, S., Loosfelt, H., Saunier, B., Milgrom, E., and Misrahi, M. (1996). Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain. Biochemistry 35, 14800–14805.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, J.H., Lea, K., Schaber, M.D., and Kramer, R.A. (1987). Signal peptide specificity in post-translational processing of the plant protein phaseolin in Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 121–128.

    PubMed  CAS  Google Scholar 

  • Durfee, T., Becherer, K., Chen, P.L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H., and Elledge, S.J. (1993). The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569.

    Article  PubMed  CAS  Google Scholar 

  • Favaloro, V., Spasic, M., Schwappach, B., and Dobberstein, B. (2008). Distinct targeting pathways for the membrane insertion of tail-anchored (TA). proteins. J. Cell Sci. 121, 1832–1840.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, D.M., and Soling, H.D. (1999). The protein disulphide-isomerase family: unraveling a string of folds. Biochem. J. 339, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 20, 245–246.

    Article  Google Scholar 

  • Finn, R.D., Mistry, J., Schuster-Böckler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxou, S., Marshall, M., Khanna, A., Durbin, R., et al. (2006). Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251.

    Article  PubMed  CAS  Google Scholar 

  • Frand, A.R., and Kaiser, C.A. (1998). The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell 1, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Furumizu, C., Tsukaya, H., and Komeda, Y. (2010). Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1. RNA 16, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, C.W., Cemazar, M., Heras, B., Martin, J.L., and Craik, D.J. (2006). Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem. Sci. 31, 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, C.W., Cemazar, M., Clark, R.J.T., Renda, R.F., Anderson, M.A., and Craik, D.J. (2007). A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J. Biol. Chem. 282, 20435–20446.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C., and Hodge, S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94, 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  • Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F., Kieliszewski, M.J., and Gietl, C. (2008). KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds. Am. J. Bot. 95, 1049–1062.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, T., Watanabe, Y., and Waga, I. (2004). Protein disulfide isomerase suppresses the transcriptional activity of NF-κB. Bio chem. Biophys. Res. Commun. 318, 46–52.

    Article  CAS  Google Scholar 

  • Holst, B., Tachibana, C., and Winther, J.R. (1997). Active site mutations in yeast protein disulfide isomerase cause dithiothreitol densitivity and a reduced rate of protein folding in the endoplasmic reticulum. J. Cell. Biol. 138, 1229–1238.

    Article  PubMed  CAS  Google Scholar 

  • Honscha, W., Ottallah, M., Kistner, A., Platte, H., and Petzinger, E. (1993). A membrane-bound form of protein disulfide isomerase (PDI). and the hepatic uptake of organic anions. Biochim. Biophys. Acta 1153, 175–183.

    CAS  Google Scholar 

  • Houston, N.L., Fan, C., Xiang, J.Q., Schulze, J.M., Jung, R., and Boston, R.S. (2005). Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol. 137, 762–778.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R.C., and Blobel, G. (1977). Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity. Proc. Natl. Acad. Sci. USA 74, 5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.

    PubMed  CAS  Google Scholar 

  • Jauvion, V., Elmayan, T., and Vaucheret, H. (2010). The conserved RNA trafficking proteins HPR1 and TEX1 are involved in the production of endogenous and exogenous small interfering RNA in Arabidopsis. Plant Cell 22, 2697–2709.

    Article  PubMed  CAS  Google Scholar 

  • John, D.C., and Bulleid, N.J. (1994). Prolyl 4-hydroxylase: defective assembly of alpha-subunit mutants indicates that assembled alpha-subunits are intramolecularly disulfide bonded. Biochemistry 33, 14018–14025.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A.M., and Herman, E.M. (1993). A K-D-E-L-containing auxin-binding protein is located at the plasma membrane and within the cell wall. Plant Physiol. 101, 595–606.

    PubMed  CAS  Google Scholar 

  • Kanai, S., Toh, H., Hayano, T., and Kikuchi, M. (1998). Molecular evolution of the domain structures of protein disulfide isomerases. J. Mol. Evol. 47, 200–210.

    Article  PubMed  CAS  Google Scholar 

  • Karniely, S., and Pines, O. (2005). Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep. 6, 420–425.

    Article  PubMed  CAS  Google Scholar 

  • Kerk, D., Bulgrien, J., Smith, D.W., and Gribskov, M. (2003). Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol. 131, 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.M., and Mayfield, S.P. (1997). Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278, 1954–1957.

    Article  PubMed  CAS  Google Scholar 

  • Kong, Z., Li, M., Yang, W., Xu, W., and Xue, Y. (2006). A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol. 141, 1376–1388.

    Article  PubMed  CAS  Google Scholar 

  • Lahav, J., Gofer-Dadosh, N., Luboshitz, J., Hess, O., and Shaklai, M. (2000). Protein disulfide isomerase mediates integrindependent adhesion. FEBS Lett. 475, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Lamberg, A., Jauhiainen, M., Metso, J., Ehnholm, C., Shoulders, C., Scott, J., Pihlajaniemi, T., and Kivirikko, K.I. (1996). The role of protein disulphide isomerase in the microsomal triacylglycerol transfer protein does not reside in its isomerase activity. Biochem. J. 315, 533–536.

    PubMed  CAS  Google Scholar 

  • Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282, 5101–5105.

    Article  PubMed  CAS  Google Scholar 

  • Lappi, A.K., Lensink, M.F., Alanen, H.I., Salo, K.E., Lobell, M., Juffer, A.H., and Ruddock, L.W. (2004). A conserved arginine plays a role in the catalytic cycle of the protein disulphide isomerases. J. Mol. Biol. 335, 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.-O., Cho, K., Cho, S., Kim, I., Oh, C., and Ahn, K. (2010). Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation. EMBO J. 29, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Levitan, A., Trebitsh, T., Kiss, V., Pereg, Y., Dangoor, I., and Danon, A. (2005). Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 6225–6230.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.P., and Larkins, B.A. (1996). Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury 2 mutant. Plant Mol. Biol. 30, 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D.-P., and Christopher, D.A. (2006). Immunolocalization of a protein disulfide isomerase to Arabidopsis thaliana chloroplasts and its association with starch biogenesis. Int. J. Plant Sci. 167, 1–9.

    Article  CAS  Google Scholar 

  • Lu, D.-P., and Christopher, D.A. (2008). Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol. Genet. Genomics 280, 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Lucero, H.A., and Kaminer, B. (1999). The role of calcium on the activity of ER calcistorin/Protein-disulfide Isomerase and the significance of the C-terminal and itscalcium binding A comparison with mammalian protein-disulfide isomerase. J. Biol. Chem. 274, 3243–3251.

    Article  PubMed  CAS  Google Scholar 

  • Lumb, R.A., and Bulleid, N.J. (2002). Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J. 21, 6763–6770.

    Article  PubMed  CAS  Google Scholar 

  • Markus, M., and Benezra, R. (1999). Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism. J. Biol. Chem. 274, 1040–1049.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, D., Endo, T., and Nishikawa, S. (2010). BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 1684–1689.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M., Kies, U., Kammermeier, R., and Buchner, J. (2000). BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J. Biol. Chem. 275, 29421–29425.

    Article  PubMed  CAS  Google Scholar 

  • Motohashi, K., Kondoh, A., Stumpp, M.T., and Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl. Acad. Sci. USA 98, 11224–11229.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, B.K., Cai, X., and Nebenführ, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136.

    Article  PubMed  CAS  Google Scholar 

  • Neuteboom, L.W., Matsumoto, K.O., and Christopher, D.A. (2009). An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is post-translationally removed during ripening. Plant Physiol. 151, 515–527.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani, H., Wakui, H., Ishino, T., Komatsuda, A., and Miura, A.B. (1993). An isoform of protein disulfide isomerase is expressed in the developing acrosome of spermatids during rat spermiogenesis and is transported into the nucleus of mature spermatids and epididymal spermatozoa. Histochemistry 100, 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Okita, T.W., and Rogers, J.C. (1996). Compartmentation of proteins in the endomembrane system of plant cells. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 47, 327–350.

    Article  PubMed  CAS  Google Scholar 

  • Onda, Y., Nagamine, A., Sakurai, M., Kumamaru, T., Ogawa, M., and Kawagoe, Y. (2011). Distinct roles of protein disulfide isomerase and p5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. Plant Cell 23, 210–223.

    Article  PubMed  CAS  Google Scholar 

  • Ondzighi, C.A., Christopher, D.A., Cho, E.J., Chang, S.C., and Staehelin, L.A. (2008). Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20, 2205–2220.

    Article  CAS  Google Scholar 

  • Ostermeier, M., De Sutter, K., and Georgiou, G. (1996). Eukaryotic protein disulfide isomerase complements E. coli dsbA mutants and increases the yield of heterologous secreted protein with disulfide bonds. J. Biol. Chem. 271, 10616–10622.

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S., Capron, A., Xie, L.F., Ye, D., and Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Plath, K., Mothes, W., Wilkinson, B.M., Stirling, C.J., and Rapoport, T.A. (1998). Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807.

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz, M.C., Hah, C., Lin, P.-C., Kang, S.G., Finer, J.J., Blackshear, P.J., and Jang, J.C. (2010). The Arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiol. 152, 151–165.

    Article  PubMed  CAS  Google Scholar 

  • Powers, T., and Walter, P. (1996). The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome. Curr. Biol. 6, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, T.A., Matlack, K.E., Plath, K., Misselwitz, B., and Staeck, O. (1999). Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol. Chem. 380, 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  • Rigobello, M.P., Donella-Deana, A., Cesaro, L., and Bindoli, A. (2001). Distribution of protein disulphide isomerase in rat liver mitochondria. Biochem. J. 356, 567–570.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, J.A., Chen, H., Slepnev, V.I., Pellegrini, L., Salcini, A.E., Di Fiore, P.P., and De Camilli, P. (1999). The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J. Biol. Chem. 274, 33959–33965.

    Article  PubMed  CAS  Google Scholar 

  • Rout, M.P., Aitchison, J.D., Magnasco, M.O., and Chait, B.T. (2003). Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, H., Mochizuki, M., Ogura, K., Froehlich, J.E., Osteryoung, K.W., Shirano, Y., Shibata, D., Masuda, S., Mori, K., and Takamiya, K. (2007). Arabidopsis cotyledon-specific chloroplast biogenesis factor CYO1 is a protein disulfide isomerase. Plant Cell 19, 3157–3169.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni, Y., Zhu, X.Z., Levanony, H., Segal, G., and Galili, G. (1995). Purification characterization and intracellular localization of glycosylated protein disulfide isomerase from wheat grains. Plant Physiol. 108, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Sone, M., Kishigami, S., Yoshihisa, T., and Ito, K. (1997). Roles of disulfide bonds in bacterial alkaline phosphatase. J. Biol. Chem. 272, 6174–6178.

    Article  PubMed  CAS  Google Scholar 

  • Stockton, J.D., Merkert, M.C., and Kellaris, K.V. (2003). A complex of chaperones and disulfide isomerases occludes the cytosolic face of the translocation protein Sec61p and affects translocation of the prion protein. Biochemistry 42, 12821–12834.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and matalpha2 repressor degradation. Genes Dev. 15, 2660–2674.

    Article  PubMed  CAS  Google Scholar 

  • Takemoto, Y., Coughlan, S.J., Okita, T.W., Satoh, H., Ogawa, M., and Kumamaru, T. (2002). The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol. 128, 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Yamada, K., Shimada, T., and Hara-Nishimura, I. (2004). Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. Plant J. 39, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Tu, B., Ho-Schleyer, S.C., Travers, K.J., and Weissman, K.J. (2000). Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290, 1571–1574.

    Article  PubMed  CAS  Google Scholar 

  • Turano, C., Coppari, S., Altieri, F., and Ferraro, A. (2002). Proteins of the PDI family: unpredicted non-ER locations and functions. J. Cell. Physiol. 193, 154–163.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Boavida, L.C., Ron, M., and McCormick, S. (2008). Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thaliana. Plant Cell 20, 3300–3311.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R., Lees, J.F., and Bulleid, N.J. (1998). Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J. Biol. Chem. 273, 9637–9643.

    Article  PubMed  CAS  Google Scholar 

  • Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C. -S. (2009). Tape-Arabidopsis sandwich — a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 1–10.

    Article  Google Scholar 

  • Xu, P., Radena, D., Doyle, III F.J., and Robinson, A.S. (2005). Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding. Metab. Eng. 7, 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimori, T., Semba, T., Takemoto, H., Akagi, S., Yamamoto, A., and Tashiro, Y. (1990). Protein disulfide-isomerase in rat exocrine pancreatic cells is exported from the endoplasmic reticulum despite possessing the retention signal. J. Biol. Chem. 265, 15984–15990.

    PubMed  CAS  Google Scholar 

  • Zaltsman, A., Yi, B.Y., Gafni, Y., and Citovsky, V. (2007). Yeastplant coupled vector system for identification of nuclear proteins. Plant Physiol. 145, 1264–1271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Christopher.

About this article

Cite this article

Cho, E.J., Yuen, C.Y., Kang, BH. et al. Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol Cells 32, 459–475 (2011). https://doi.org/10.1007/s10059-011-0150-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0150-3

Keywords

Navigation