Skip to main content
Log in

PI3-Kinase/p38 kinase-dependent E2F1 activation is critical for pin1 induction in tamoxifen-resistant breast cancer cells

  • Published:
Molecules and Cells

Abstract

Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. We have shown that Pin1, a peptidyl prolyl isomerase, is consistently overexpressed in TAM-resistant MCF-7 cells (TAMR-MCF-7 cells) and plays a key role in the enhanced angiogenic potential of TAMR-MCF-7 cells. In the present study, we focused on signaling pathways for Pin1 up-regulation in TAMR-MCF-7 cells. Relative to MCF-7 cells, Pin1 gene transcription and E2 transcription factor1 (E2F1) expression were enhanced in TAMR-MCF-7 cells. E2F1 siRNA significantly reduced both the protein expression and the promoter transcriptional activity of Pin1. Activities of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK) and p38 kinase were all higher in TAMR-MCF-7 cells than in control MCF-7 cells and the enhanced Pin1 and E2F1 expression in TAMR-MCF-7 cells was reversed by inhibition of PI3K or p38 kinase. Moreover, the higher production of vascular endothelial growth factor (VEGF) in TAMR-MCF-7 cells was significantly diminished by suppression of PI3K or p38 kinase. These results suggest that Pin1 overexpression and subsequent VEGF production in TAMR-MCF-7 cells are mediated through PI3-kinase or p38 kinase-dependent E2F1 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S., and Coombes, R.C. (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer 2, 101–112.

    Article  PubMed  Google Scholar 

  • Bao, L., Sauter, G., Sowadski, J., Lu, K.P., and Wang, D. (2004). Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E., Goettsch, S., Mueller, J.W., Griewel, B., Guiberman, E., Mayr, L.M., and Bayer, P. (2003). Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. J. Biol. Chem. 278, 26183–26193.

    Article  PubMed  CAS  Google Scholar 

  • Bracken, A.P., Ciro, M., Cocito, A., and Helin, K. (2004). E2F target genes: unraveling the biology. Trends Biochem. Sci. 29, 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Chaussepied, M., and Ginsberg, D. (2004). Transcriptional regulation of AKT activation by E2F. Mol. Cell 16, 831–837.

    Article  PubMed  CAS  Google Scholar 

  • Choi, H.K., Yang, J.W., Roh, S.H., Han, C.Y., and Kang, K.W. (2007). Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr. Relat. Cancer 14, 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Clemons, M., Danson, S., and Howell, A. (2002). Tamoxifen (’Nolvadex’): a review, Cancer Treat. Rev. 28, 165–180.

    CAS  Google Scholar 

  • Finn, G., and Lu, K.P. (2008). Phosphorylation-specific prolyl isomerase Pin1 as a new diagnostic and therapeutic target for cancer. Curr. Cancer Drug Targets 8, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, T., Korotayev, K., Polager, S., and Ginsberg, D. (2006). E2F1 modulates p38 MAPK phosphorylation via transcriptional regulation of ASK1 and Wip1. J. Biol. Chem. 281, 31309–31316.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D.G., and Degregori, J. (2006). Putting the oncogenic and tumor suppressive activities of E2F into context. Curr. Mol. Med. 6, 731–738.

    PubMed  CAS  Google Scholar 

  • Kim, M.R., Choi, H.S., Heo, T.H., Hwang, S.W., and Kang, K.W. (2008). Induction of vascular endothelial growth factor by peptidyl-prolyl isomerase Pin1 in breast cancer cells. Biochem. Biophys. Res. Commun. 369, 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.R., Choi, H.S., Yang, J.W., Park, B.C., Kim, J.A., and Kang, K.W. (2009a). Enhancement of vascular endothelial growth factor-mediated angiogenesis in tamoxifen-resistant breast cancer cells: role of Pin1 overexpression. Mol. Cancer Ther. 8, 2163–2171.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.R., Choi, H.K., Cho, K.B., Kim, H.S., and Kang, K.W. (2009b). Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Sci. 100, 1834–1841.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N.Y., Choi, H.K., Shim, J.H., Kang, K.W., Dong, Z., and Choi, H.S. (2009). The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation. Carcinogenesis 30, 671–681.

    Article  PubMed  CAS  Google Scholar 

  • Lu, K.P. (2004). Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem. Sci. 29, 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Pang, R., Lee, T.K., Poon, R.T., Fan, S.T., Wong, K.B., Kwong, Y.L., and Tse, E. (2007). Pin1 interacts with a specific serineproline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 132, 1088–1103.

    Article  PubMed  CAS  Google Scholar 

  • Petrangeli, E., Lubrano, C., Ortolani, F., Ravenna, L., Vacca, A., Sciacchitano, S., Frati, L., and Gulino, A. (1994). Estrogen receptors: new perspectives in breast cancer management. J. Steroid Biochem. Mol. Biol. 49, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Pintus, G., Tadolini, B., Posadino, A.M., Sanna, B., Debidda, M., Carru, C., Deiana, L., and Ventura, C. (2003). PKC/Raf/MEK/ERK signaling pathway modulates native-LDL-induced E2F-1 gene expression and endothelial cell proliferation. Cardiovasc. Res. 59, 934–944.

    Article  PubMed  CAS  Google Scholar 

  • Polager, S., and Ginsberg, D. (2008). E2F-at the crossroads of life and death. Trends Cell Biol. 18, 528–535.

    Article  PubMed  CAS  Google Scholar 

  • Pulikkan, J.A., Dengler, V., Peer Zada, A.A., Kawasaki, A., Geletu, M., Pasalic, Z., Bohlander, S.K., Ryo, A., Tenen, D.G., and Behre, G. (2010). Elevated PIN1 expression by C/EBPalpha-p30 blocks C/EBPalpha-induced granulocytic differentiation through c-Jun in AML. Leukemia 24, 914–923.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, M., Saur, D., Hamacher, R., Schmid, R.M., and Schneider, G. (2007). Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res. 67, 4149–4156.

    Article  PubMed  CAS  Google Scholar 

  • Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R.A., and Dynlacht, B.D. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16, 245–256.

    Article  PubMed  CAS  Google Scholar 

  • Rose, C., Thorpe, S.M., Andersen, K.W., Pedersen, B.V., Mouridsen, H.T., Blichert-Toft, M., and Rasmussen, B.B. (1985). Beneficial effect of adjuvant tamoxifen therapy in primary breast cancer patients with high oestrogen receptor values. Lancet 1, 16–19.

    Article  PubMed  CAS  Google Scholar 

  • Ryo, A., Liou, Y.C., Wulf, G., Nakamura, M., Lee, S.W., and Lu, K.P. (2002). PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281–5295.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, T., Akiyama, H., Abe, Y., Sasada, H., Sato, E., Miyamoto, A., and Uchida, T. (2006). Expression of Pin1, a peptidyl-prolyl isomerase, in the ovaries of eCG/hCG-treated immature female mice. J. Reprod. Dev. 52, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W.H., Hullinger, R.L., and Andrisani, O.M. (2008). Hepatitis B virus X protein via the p38MAPK pathway induces E2F1 release and ATR kinase activation mediating p53 apoptosis. J. Biol. Chem. 283, 25455–25467.

    Article  PubMed  CAS  Google Scholar 

  • Weiwad, M., Küllertz, G., Schutkowski, M., and Fischer, G. (2000). Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett. 478, 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Wulf, G.M., Ryo, A., Wulf, G.G., Lee, S.W., Niu, T., Petkova, V., and Lu, K.P. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J. 20, 3459–3472.

    Article  PubMed  CAS  Google Scholar 

  • Wulf, G., Garg, P., Liou, Y.C., Iglehart, D., and Lu, K.P. (2004). Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407.

    Article  PubMed  CAS  Google Scholar 

  • You, H., Zheng, H., Murray, S.A., Yu, Q., Uchida, T., Fan, D., and Xiao, Z.X. (2002). IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J. Cell. Biochem. 84, 211–216.

    Article  PubMed  Google Scholar 

  • Zhou, X.Z., Kops, O., Werner, A., Lu, P.J., Shen, M., Stoller, G., Küllertz, G., Stark, M., Fischer, G., and Lu, K.P. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keon Wook Kang.

About this article

Cite this article

Lee, K.Y., Lee, J.W., Nam, H.J. et al. PI3-Kinase/p38 kinase-dependent E2F1 activation is critical for pin1 induction in tamoxifen-resistant breast cancer cells. Mol Cells 32, 107–111 (2011). https://doi.org/10.1007/s10059-011-0074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0074-y

Keywords

Navigation