Molecules and Cells

, Volume 31, Issue 2, pp 165–173 | Cite as

Immunostimulating activity by polysaccharides isolated from fruiting body of Inonotus obliquus

  • Dong Pil Won
  • Jong Seok Lee
  • Duck Soo Kwon
  • Keun Eok Lee
  • Won Cheol Shin
  • Eock Kee HongEmail author


In this study, we investigated the immunostimulating activity of polysaccharides isolated from fruiting body of Inonotus obliquus (PFIO). Additionally, the signaling pathway of PFIO-mediated macrophage activation was investigated in RAW264.7 macrophage cells. We found that PFIO was capable of promoting NO/ROS production, TNF-α secretion and phagocytic uptake in macrophages, as well as cell proliferation, comitogenic effect and IFN-γ/IL-4 secretion in mouse splenocytes. PFIO was able to induce the phosphorylation of three MAPKs as well as the nuclear translocation of NF-κB, resulting in activation of RAW264.7 macrophages. PFIO also induced the inhibition of TNF-α secretion by anti-TLR2 mAb, consequently, PFIO might be involved in TNF-α secretion via the TLR2 receptor. In addition, our results showed that oral administration of PFIO suppressed in vivo growth of melanoma tumor in tumorbearing mice. In conclusion, our experiments presented that PFIO effectively promotes macrophage activation through the MAPK and NF-κB signaling pathways, suggesting that PFIO may potentially regulate the immune response.


immunostimulating activity Inonotus obliquus MAPKs NF-κpattern-recognition receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balkwill, F. (2009). Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371.PubMedCrossRefGoogle Scholar
  2. Borchers, A.T., Keen, C.L., and Gershwin, M.E. (2004). Mushrooms, Tumors, and Immunity: An update. Exp. Biol. Med. 229, 393–406.Google Scholar
  3. Borchers, A.T., Krishnamurthy, A., Keen, C.L., Meyers, F.J., and Gershwin, M.E. (2008). The immunobiology of mushrooms. Exp. Biol. Med. 233, 259–276.CrossRefGoogle Scholar
  4. Byeon, S.E., Lee, J., Lee, E., Lee, S.Y., Hong, E.K., Kim, Y.E., and Cho, J.Y. (2009), Functional activation of macrophages, monocytes and splenic lymphocytes by polysaccharide fraction from Tricholoma matsutake. Arch. Pharm. Res. 31, 1565–1572.CrossRefGoogle Scholar
  5. Carini, M., Aldini, G., Orioli, M., Piccoli, A., Rossoni, G., and Maffei Facino, R. (2004). Nitric oxide release and distribution following oral and intraperitoneal administration of nitroaspirin (NCX 4016) in the rat. Life Sci. 74, 3291–3305.PubMedCrossRefGoogle Scholar
  6. Chang, Z.Q., Lee, J.S., Gebru, E., Hong, J.H., Jung, H.K., Jo, W.S., and Park, S.C. (2010). Mechanism of macrophage activation induced by beta-glucan produced from Paenibacillus polymyxa JB115. Biochem. Biophys. Res. Commun. 391, 1358–1362.PubMedCrossRefGoogle Scholar
  7. Cui, Y., Kim, D.S., and Park, K.C. (2005). Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol. 96, 79–85.PubMedCrossRefGoogle Scholar
  8. Dalmo, R.A., and Bøgwald, J. (2008). Beta-glucans as conductors of immune symphonies. Fish Shellfish Immunol. 25, 384–396.PubMedCrossRefGoogle Scholar
  9. Duperrier, K., Eljaafari, A., Dezutter-Dambuyant, C., Bardin, C., Jacquet, C., Yoneda, K., Schmitt, D., Gebuhrer, L., and Rigal, D. (2000). Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements. J. Immunol. Methods 238, 119–131.PubMedCrossRefGoogle Scholar
  10. Goodridge, H.S., Wolf, A.J., and Underhill, D.M. (2009). Betaglucan recognition by the innate immune system. Immunol. Rev. 230, 38–50.PubMedCrossRefGoogle Scholar
  11. Goossens, V., Grooten, J., De Vos, K., and Fiers, W. (1995). Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA 92, 8115–8119.PubMedCrossRefGoogle Scholar
  12. Herre, J., Gordon, S., and Brown, G.D. (2004). Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol. Immunol. 40, 869–876.PubMedCrossRefGoogle Scholar
  13. Kidd, P. (2003). Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 8, 223–246.PubMedGoogle Scholar
  14. Kim, G.Y., Choi, G.S., Lee, S.H., and Park, Y.M. (2004a). Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-alpha from peritoneal macrophages. J. Ethnopharmacol. 95, 69–76.PubMedCrossRefGoogle Scholar
  15. Kim, G.Y., Han, M.G., Song, Y.S., Shin, B.C., Shin, Y.I., Lee, H.J., Moon, D.O, Lee, C.M., Kwak, J.Y., Bae, Y.S., et al. (2004b). Proteoglycan isolated from Phellinus linteus induces toll-like receptors 2- and 4-mediated maturation of murine dendritic cells via activation of ERK, p38, and NF-kappaB. Biol. Pharm. Bull. 27, 1656–1662.PubMedCrossRefGoogle Scholar
  16. Kim, Y.O., Han, S.B., Lee, H.W., Ahn, H.J., Yoon, Y.D., Jung, J.K., Kim, H.M., and Shin, C.S. (2005). Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 77, 2438–2456.PubMedCrossRefGoogle Scholar
  17. Kim, Y.O., Park, H.W., Kim, J.H., Lee, J.Y., Moon, S.H., and Shin, C.S. (2006). Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci. 79, 72–80.PubMedCrossRefGoogle Scholar
  18. Kumar, A., Takada, Y., Boriek, A.M., and Aggarwal, B.B. (2004). Nuclear factor-kappa B: its role in health and disease. J. Mol. Med. 82, 434–448.PubMedCrossRefGoogle Scholar
  19. Kuo, M.C., Weng, C.Y., Ha, C.L., and Wu, M.J. (2005). Ganoderma lucidum mycelia enhance innate immunity by activating NFkappaB. J. Ethnopharmacol. 103, 217–222.PubMedCrossRefGoogle Scholar
  20. Lee, J.Y., Kim, J.Y., Lee, Y.G., Rhee, M.H., Hong, E.K., and Cho, J.Y. (2008). Molecular mechanism of macrophage activation by exopolysaccharides from liquid culture of Lentinus edodes. J. Microbiol. Biotechnol. 18, 335–363.Google Scholar
  21. Lee, J.S., Cho, J.Y., and Hong, E.K. (2009a). Study on macrophage activation and structural characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus. Carbohydr. Polym. 78, 162–168.CrossRefGoogle Scholar
  22. Lee, S.H., Hwang, H.S., and Yun, J.W. (2009b). Antitumor activity of water extract of a mushroom, Inonotus obliquus, against HT-29 human colon cancer cells. Phytother. Res. 23, 1784–1789.PubMedCrossRefGoogle Scholar
  23. Lee, J.S., Kwon, J.S., Won, D.P., Lee, J.H., Lee, K.E., Lee, S.Y., and Hong, E.K. (2010). Study of macrophage activation and structural characteristics of purified polysaccharide from the fruiting body of Cordyceps militaris. J. Microbiol. Biotechnol. 20, 1053–1060.PubMedCrossRefGoogle Scholar
  24. Lull, C., Wichers, H.J., and Savelkoul, H.F. (2005). Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm. 2005, 63–80.PubMedCrossRefGoogle Scholar
  25. Naik, S. (2003). Introduction to the immune system. J. Indian Rheumatol. Assoc. 11, 8–13.Google Scholar
  26. Neves, B.M., Cruz, M.T., Francisco, V., Garcia-Rodriguez, C., Silvestre, R., Cordeiro-da-Silva, A., Dinis, A.M., Batista, M.T., Duarte, C.B., and Lopes, M.C. (2009). Differential roles of PI3-Kinase, MAPKs and NF-kappaB on the manipulation of dendritic cell T(h)1/T(h)2 cytokine/chemokine polarizing profile. Mol. Immunol. 46, 2481–2492.PubMedCrossRefGoogle Scholar
  27. Ooi, V.E., and Liu, F. (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 7, 715–729.PubMedGoogle Scholar
  28. Rop, O., Mlcek, J., and Jurikova, T. (2009). Beta-glucans in higher fungi and their health effects. Nutr. Rev. 67, 624–631.PubMedCrossRefGoogle Scholar
  29. Schepetkin, I.A., and Quinn, M.T. (2006), Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6, 317–313.PubMedCrossRefGoogle Scholar
  30. Schorey, J.S., and Cooper, A.M. (2003). Macrophage signaling upon mycobacterial infection: the MAP kinases lead the way. Cell. Microbiol. 5, 133–142.PubMedCrossRefGoogle Scholar
  31. Son, C.G., Shin, J.W., Cho, J.H., Cho, C.K., Yun, C.H., Chung, W., and Han, S.H. (2006). Macrophage activation and nitric oxide production by water soluble components of Hericium erinaceum. Int. Immunopharmacol. 6, 1363–1369.PubMedCrossRefGoogle Scholar
  32. Tsan, M.F., and Baochong, G. (2007), Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J. Endotoxin Res. 13, 6–14.PubMedCrossRefGoogle Scholar
  33. Volman, J.J., Ramakers, J.D., and Plat, J. (2008). Dietary modulation of immune function by beta-glucans. Physiol. Behav. 94, 276–284.PubMedCrossRefGoogle Scholar
  34. Yoon, H.J., Jeon, S.B., Suk, K.H., Choi, D.K., Hong, Y.J., and Park, E.J. (2008). Contribution of TLR2 to the initiation of ganglioside-triggered inflammatory signaling. Mol. Cell 25, 99–104.Google Scholar
  35. Youn, M.J., Kim, J.K., Park, S.Y., Kim, Y., Park, C., Kim, E.S., Park, K.I., So, H.S., and Park, R. (2009). Potential anticancer properties of the water extract of Inonotus obliquus by induction of apoptosis in melanoma B16-F10 cells. J. Ethnopharmacol. 121, 221–228.PubMedCrossRefGoogle Scholar
  36. Zaidman, B.Z., Yassin, M., Mahajna, J., and Wasser, S.P. (2005). Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 67, 453–468.PubMedCrossRefGoogle Scholar
  37. Zhong, X.H., Ren, K., Lu, S.J., Yang, S.Y., and Sun, D.Z. (2009). Progress of research on Inonotus obliquus. Chin. J. Integr. Med. 15, 156–160.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Dong Pil Won
    • 1
  • Jong Seok Lee
    • 1
  • Duck Soo Kwon
    • 1
  • Keun Eok Lee
    • 1
  • Won Cheol Shin
    • 1
  • Eock Kee Hong
    • 1
    Email author
  1. 1.Department of Bioengineering and TechnologyKangwon National UniversityChuncheonKorea

Personalised recommendations