Skip to main content
Log in

Phylogenetic and expression analysis of RNA-binding proteins with triple RNA recognition motifs in plants

  • Published:
Molecules and Cells

Abstract

The superfamily of RNA binding proteins (RBPs) is vastly expanded in plants compared to other eukaryotes. A subfamily of RBPs that contain three RNA recognition motifs (RRMs) from the Arabidopsis (24), rice (19) and poplar (37) genomes was analyzed in this study. Phylogenetic analysis with full-length protein sequences of 80 RBPs identified nine clades. The largest clade, comprising 23 members, showed high homology to human RBPs involved in oxidative signaling. Digital northern analysis revealed that Arabidopsis RBPs are transcriptionally responsive to biotic, abiotic and hormonal treatments. Northern blot analysis of eight Arabidopsis RBPs belonging to the tobacco RBP45/47 family showed that these genes respond to ozone stress. AtRBP45b, which shows closest homology to the yeast oxidative stress regulatory protein, CSX1, was expressed in multiple tissues. Two novel splice variant forms of AtRBP45b were identified by 3′RACE analysis. Based on RT-PCR, splice variant AtRBP45b-SV1 was observed only in response to mechanical wounding caused by pathogen or chemical infiltrations and was not detectable in response to salt or temperature stress. Electrophoretic mobility shift assay demonstrated that recombinant full-length and splice variant forms of AtRBP45b bound synthetic RNA. Identifying in vivo RNA targets of AtRBP45b will aid in determining the precise functional role of these proteins during oxidative signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelmohsen, K., Kuwano, Y., Kim, H.H., and Gorospe, M. (2008). Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol. Chem. 389, 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Adams, K.L., and Wendel, J.F. (2005). Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  • Anantharaman, V., Koonin, E.V., and Aravind, L. (2002). Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30, 1427–1464.

    Article  PubMed  CAS  Google Scholar 

  • Antic, D., and Keene, J.D. (1997). Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am. J. Hum. Genet. 61, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, T.L., and Gribskov, M. (1998). Combining evidence using pvalues, application to sequence homology searches. Bioinformatics 14, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34, W369–W373.

    Article  PubMed  CAS  Google Scholar 

  • Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y., and Watkins, K.P. (2007). The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein. RNA 13, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Black, D.L., Cahn, R., Min, H., Wang, J., and Bell, L. (1998). The electrophoretic mobility shift assay for RNA binding proteins. In RNA: Protein Interactions: A Practical Approach, C.W.J. Smith, ed. (New York Tokyo: Oxford University Press), pp. 109–135.

    Google Scholar 

  • Bove, J., Kim, C.Y., Gibson, C.A., and Assmann, S.M. (2008). Characterization of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis. Plant Mol. Biol. 67, 71–88.

    Article  PubMed  CAS  Google Scholar 

  • Burd, C.G., and Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Consortium, C.e.S. (1998). Genome sequence of the nematode Celegans: A platform for investigating biology. Science 282, 2012–2018.

    Article  Google Scholar 

  • Danon, A., and Mayfield, S.P.Y. (1991). Light regulated translational activators — Identification of chloroplast gene specific messenger-RNA binding proteins. EMBO 10, 3993–4001.

    CAS  Google Scholar 

  • Fedoroff, N.V. (2002). RNA-binding proteins in plants: the tip of an iceberg? Curr. Opin. Plant Biol. 5, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Z.Q., Guo, M., Jeong, B.R., Tian, F., Elthon, T.E., Cerny, R.L., Staiger, D., and Alfano, J.R. (2007). A type III effector ADPribosylates RNA-binding proteins and quells plant immunity. Nature 447, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Gendra, E., Moreno, A., Alba, M.M., and Pages, M. (2004). Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J. 38, 875–886.

    Article  PubMed  CAS  Google Scholar 

  • Good, P.J., Chen, Q., Warner, S.J., and Herring, D.C. (2000). A family of human RNA-binding proteins related to the Drosophila Bruno translational regulator. J. Biol. Chem. 275, 28583–28592.

    Article  PubMed  CAS  Google Scholar 

  • Green, R.E., Lewis, B.P., Hillman, R.T., Blanchette, M., Lareau, L.F., Garnett, A.T., Rio, D.C., and Brenner, S.E. (2003). Widespread predicted nonsense-mediated mRNA decay of alternativelyspliced transcripts of human normal and disease genes. Bioinformatics 19, 118–121.

    Article  Google Scholar 

  • Horan, K., Lauricha, J., Bailey-Serre, s J., Raikhel, N., and Girke, T. (2005). Genome cluster database. A sequence family analysis platform for Arabidopsis and rice. Plant Physiol. 138, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux, V., Kwak, J.M., and Schroeder, J.I. (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M., Tyagi, A.K., and Khurana, J.P. (2006). Genome-wide analysis, evolutionary expansion, and expression of early auxinresponsive SAUR gene family in rice (Oryza sativa). Genomics 88, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan, N., and Mahalingam, R. (2006). Analysis of arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, K.H., Herrin, D.L., Plumley, F.G., and Schmidt, G.W. (1986). Biogenesis of photosystem-II Complexes — Transcriptional, translational, and posttranslational regulation. J. Cell Biol. 103, 1315–1325.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J.W., Ji, A.R., Lee, J., Kim, U.J., and Lee, S.T. (2002). Organization of the human PTK7 gene encoding a receptor protein tyrosine kinase-like molecule and alternative splicing of its mRNA. Biochim. Biophys. Acta 1579, 153–163.

    PubMed  CAS  Google Scholar 

  • Kaur, J., Sebastian, J., and Siddiqi, I. (2006). The Arabidopsismei2-like genes play a role in meiosis and vegetative growth in Arabidopsis. Plant Cell 18, 545–559.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, A., Tian, Q.S., Duan, X.C., Streuli, M., Schlossman, S.F., and Anderson P. (1992). Identification and functional characterization of a Tia-1-related nucleolysin. Proc. Natl. Acad. Sci. USA 89, 8681–8685.

    Article  PubMed  CAS  Google Scholar 

  • Kiledjian, M., and Dreyfuss, G. (1992). Primary structure and binding activity of the Hnrnp U-Protein — binding RNA through RGG box. EMBO 11, 2655–2664.

    CAS  Google Scholar 

  • Kim, J., Shiu, S.H., Thoma, S., Li, W.H., and Patterson, S.E. (2006). Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol. 7, R87.

    Article  PubMed  Google Scholar 

  • Kim, Y.O., Pan, S., Jung, C.H., and Kang, H. (2007). A zinc fingercontaining glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol. 48, 1170–1181.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Jung, H.J., Lee, H.J., Kim, K.A., Goh, C.H., Woo, Y., Oh, S.H., Han, Y.S., and Kang, H. (2008). Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55, 455–466.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C.Y., Bove, J., and Assmann, S.M. (2008). Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. New Phytol. 180, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H. (2009). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ. 33, 759–768.

    PubMed  Google Scholar 

  • Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H. (2010). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61, 2317–2325.

    Article  PubMed  CAS  Google Scholar 

  • Kinnaird, J.H., Maitland, K., Walker, G.A., Wheatley, I., Thompson, F.J., and Devaney, E. (2004). HRP-2, a heterogeneous nuclear ribonucleoprotein, is essential for embryogenesis and oogenesis in Caenorhabditis elegans. Exp. Cell Res. 298, 418–430.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., and Chung, I.K. (2004). Interaction of an Arabidopsis RNA-binding protein with plant single-stranded telomeric DNA modulates telomerase activity. J. Biol. Chem. 279, 12812–12818.

    Article  PubMed  CAS  Google Scholar 

  • Lasko, P. (2000). The Drosophila melanogaster genome: Translation factors and RNA binding proteins. J. Cell Biol. 150, 51–56.

    Article  Google Scholar 

  • Lewis, B.P., Green, R.E., and Brenner, S.E. (2003). Evidence for the widespread coupling of alternative splicing and nonsensemediated mRNA decay in humans. Proc. Natl. Acad. Sci. USA 100, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Lim, M.H., Kim, J., Kim, Y.S., Chung, K.S., Seo, Y.H., Lee, I., Kim, J., Hong, C.B., Kim, H.J., and Park, C.M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic, Z.J. (2009). Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci. 14, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic, Z.J., and Barta, A. (2002). Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30, 623–635.

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic, Z.J., Kirk, D.A.W., Klahre, U., Hemmings-Mieszczak, M., and Filipowicz, W. (2000). RBP45 and RBP47, two oligouridylatespecific hnRNP-like proteins interacting with poly(A)(+) RNA in nuclei of plant cells. RNA 6, 1610–1624.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., and Fedoroff, N. (2000). A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell 12, 2351–2366.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., and Conery, J.S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam, R., Shah, N., Scrymgeour, A., and Fedoroff, N. (2005). Temporal evolution of the Arabidopsis oxidative stress response. Plant Mol. Biol. 57, 709–730.

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam, R., Jambunathan, N., Gunjan, S.K., Faustin, E., Weng, H., and Ayoubi, P. (2006). Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell Environ. 29, 1357–1371.

    Article  PubMed  CAS  Google Scholar 

  • Manley, J.L., and Tacke, R. (1996). SR proteins and splicing control. Genes Dev. 10, 1569–1579.

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWweese-Scott, C., Geer, L.Y., Gwadz, M., He, S.Q., Hurwitz, D.I., Jackson, J.D., Ke, Z.X., et al. (2005). CDD: a conserved domain database for protein classification. Nucleic Acids Res. 33, D192–D196.

    Article  PubMed  CAS  Google Scholar 

  • Mazan-Mamczarz, K., Lal, A., Martindale, J.L., Kawai, T., and Gorospe, M. (2006). Translational repression by RNA-binding protein TIAR. Mol. Cell. Biol. 26, 2716–2727.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.C., and Purugganan, M.D. (2005). The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Biol. 8, 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Mussgnug, J.H., Wobbe, L., Elles, I., Claus, C., Hamilton, M., Fink, A., Kahmann, U., Kapazoglou, A., Mullineaux, C.W., Hippler, M., et al. (2005). NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17, 3409–3421.

    Article  PubMed  CAS  Google Scholar 

  • Niranjanakumari, S., Lasda, E., Brazas, R., and Garcia-Blanco, M.A. (2002). Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26, 182–190.

    Article  PubMed  CAS  Google Scholar 

  • Palusa, S.G., Ali, G.S., and Reddy, A.S. (2007). Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins, regulation by hormones and stresses. Plant J. 49, 1091–1107.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.I., Endo, M., Kazama, T., Saito, H., Hakozaki, H., Takada, Y., Kawagishi-Kobayashi, M., and Watanabe, M. (2006). Molecular characterization of two anther-specific genes encoding putative RNA-binding proteins, AtRBPs, in Arabidopsis thaliana. Genes Genet. Syst. 81, 355–359.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.H., Bowers, J.E., and Chapman, B.A. (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 101, 9903–9908.

    Article  PubMed  CAS  Google Scholar 

  • Pullmann, R., Kim, H.H., Abdelmohsen, K., Lal, A., Martindale, J.L., Yang, X.L., and Gorospe, M. (2007). Analysis of turnover and translation regulatory RNA-Binding protein expression through binding to cognate mRNAs. Mol. Cell. Biol. 27, 6265–6278.

    Article  PubMed  CAS  Google Scholar 

  • Rochaix, J.D. (2001). Posttranscriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol. 125, 142–144.

    CAS  Google Scholar 

  • Rodriguez-Gabriel, M.A., Burns, G., McDonald, W.H., Martin, V., Yates, J.R., Bahler, J., and Russell, P. (2003). RNA-binding protein Csx1 mediates global control of gene expression in response to oxidative stress. EMBO J. 22, 6256–6266.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method — a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Schmidt, F., Marnef, A., Cheung, M.K., Wilson, I., Hancock, J., Staiger, D., and Ladomery, M. (2009). A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol. Biol. Rep. 37, 839–845.

    Article  PubMed  Google Scholar 

  • Schmitz-Linneweber, C., Williams-Carrier, R., and Barkan, A. (2005). RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17, 2791–2804.

    Article  PubMed  CAS  Google Scholar 

  • Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13, 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  • Singh, O.P. (2001). Functional diversity of hnRNP proteins. Indian J. Biochem. Biophys. 38, 129–134.

    PubMed  CAS  Google Scholar 

  • Singh, R.N. (2007). Evolving concepts on human SMN pre-mRNA splicing. RNA Biol. 4, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.W., and Gray, N.K. (2010). Poly(A) binding protein (PABP): a common viral target. Biochem. J. 426, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, A.K., and Schlessinger, D. (1990). Mechanism and regulation of bacterial ribosomal RNA processing. Annu. Rev. Microbiol. 44, 105–129.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, A.K., and Pollard, H.B. (1999). Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J. 13, 1911–1922.

    PubMed  CAS  Google Scholar 

  • Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouze, P., and Van de Peer, Y. (2005). EST data suggest that poplar is an ancient polyploid. New Phytol. 167, 165–170.

    Article  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Taupin, J.L., Tian, Q.S., Kedersha, N., Robertson, M., and Anderson, P. (1995). The RNA-binding protein TIAR Is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell-death. Proc. Natl. Acad. Sci. USA 92, 1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Tian, Q.S., Streuli, M., Saito, H., Schlossman, S.F., and Anderson, P. (1991). A polyadenylate binding-protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67, 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., et al. (2006). The genome sequence of black cottonwood, Populus trichocarpa (Torr. And Gray.). Science 313, 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  • Walker, N.S., Stiffler, N., and Barkan, A. (2006). POGs/PlantRBP: aresource for comparative genomics in plants. Nucleic Acids Res. 35, D852–D856.

    Article  PubMed  Google Scholar 

  • Webster, P.J., Liang, L., Berg, C.A., Lasko, P., and Macdonald, P.M. (1997). Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 11, 2510–2521.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, P., Hennig, L., and Gruissem, W. (2005). Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci. 10, 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., and Pauling, L. (1965). Evolutionary convergence and divergence in proteins. In Evolving Genes and Proteins, V. Bryson, and H.J. Vogel, eds. (New York, USA: Academic Press), pp. 97–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamurthy Mahalingam.

About this article

Cite this article

Peal, L., Jambunathan, N. & Mahalingam, R. Phylogenetic and expression analysis of RNA-binding proteins with triple RNA recognition motifs in plants. Mol Cells 31, 55–64 (2011). https://doi.org/10.1007/s10059-011-0001-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0001-2

Keywords

Navigation