Skip to main content
Log in

Innate immune responses of the airway epithelium

  • Minireview
  • Published:
Molecules and Cells

Abstract

Barrier epithelia, especially airway epithelial cells, are persistently exposed to micro-organisms and environmental factors. To protect the host from these microbial challenges, many immune strategies have evolved. The airway epithelium participates in the critical innate immune response through the secretion of immune effectors such as mucin, antimicrobial peptides (AMP), and reactive oxygen species (ROS) to entrap or kill invading microbes. In addition, airway epithelial cells can act as mediators connecting innate and adaptive immunity by producing various cytokines and chemokines. Here, we present an overview of the role of mucosal immunity in airway epithelium, emphasizing the framework of bacterial and viral infections along with regulatory mechanisms of immune effectors in human cells and selected animal models. We also describe pathophysiological roles for immune effectors in human airway disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akamine, M., Higa, F., Arakaki, N., Kawakami, K., Takeda, K., Akira, S., and Saito, A. (2005). Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect Immun. 73, 352–361.

    Article  CAS  PubMed  Google Scholar 

  • Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783–801.

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NFkappaB by Toll-like receptor 3. Nature 413, 732–738.

    Article  CAS  PubMed  Google Scholar 

  • Ameziane-El-Hassani, R., Morand, S., Boucher, J.L., Frapart, Y.M., Apostolou, D., Agnandji, D., Gnidehou, S., Ohayon, R., Noel-Hudson, M.S., Francon, J., et al. (2005). Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046–30054.

    Article  CAS  PubMed  Google Scholar 

  • Andrejeva, J., Childs, K.S., Young, D.F., Carlos, T.S., Stock, N., Goodbourn, S., and Randall, R.E. (2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101, 17264–17269.

    Article  CAS  PubMed  Google Scholar 

  • Archer, K.A., and Roy, C.R. (2006). MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect. Immun. 74, 3325–3333.

    Article  CAS  PubMed  Google Scholar 

  • Bals, R., Wang, X., Zasloff, M., and Wilson, J.M. (1998a). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA 95, 9541–9546.

    Article  CAS  PubMed  Google Scholar 

  • Bals, R., Wang, X., Wu, Z., Freeman, T., Bafna, V., Zasloff, M., and Wilson, J.M. (1998b). Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 102, 874–880.

    Article  CAS  PubMed  Google Scholar 

  • Bals, R., Weiner, D.J., Meegalla, R.L., and Wilson, J.M. (1999). Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest. 103, 1113–1117.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, J.A., Fischer, A.J., and McCray, P.B., Jr. (2008). Innate immune functions of the airway epithelium. Contrib. Microbiol. 15, 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Bedrossian, C.W., Greenberg, S.D., Singer, D.B., Hansen, J.J., and Rosenberg, H.S. (1976). The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum. Pathol. 7, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Bingle, L., Barnes, F.A., Lunn, H., Musa, M., Webster, S., Douglas, C.W., Cross, S.S., High, A.S., and Bingle, C.D. (2009). Characterisation and expression of SPLUNC2, the human orthologue of rodent parotid secretory protein. Histochem. Cell Biol. 132, 339–349.

    Article  CAS  PubMed  Google Scholar 

  • Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Bry, K., Whitsett, J.A., and Lappalainen, U. (2007). IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am. J. Respir. Cell Mol. Biol. 36, 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Buchweitz, J.P., Karmaus, P.W., Harkema, J.R., Williams, K.J., and Kaminski, N.E. (2007). Modulation of airway responses to influenza A/PR/8/34 by Delta9-tetrahydrocannabinol in C57BL/6 mice. J. Pharmacol. Exp. Ther. 323, 675–683.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Lim, J.H., Jono, H., Gu, X.X., Kim, Y.S., Basbaum, C.B., Murphy, T.F., and Li, J.D. (2004). Nontypeable Haemophilus influenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-AP1 and IKKbeta-Ikappa Balpha-NF-kappaB signaling pathways. Biochem. Biophys. Res. Commun. 324, 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  • Childs, K., Stock, N., Ross, C., Andrejeva, J., Hilton, L., Skinner, M., Randall, R., and Goodbourn, S. (2007). mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359, 190–200.

    Article  CAS  PubMed  Google Scholar 

  • Chu, H.W., Balzar, S., Seedorf, G.J., Westcott, J.Y., Trudeau, J.B., Silkoff, P., and Wenzel, S.E. (2004). Transforming growth factor-beta2 induces bronchial epithelial mucin expression in asthma. Am. J. Pathol. 165, 1097–1106.

    CAS  PubMed  Google Scholar 

  • Cole, A.M., Liao, H.I., Stuchlik, O., Tilan, J., Pohl, J., and Ganz, T. (2002). Cationic polypeptides are required for antibacterial activity of human airway fluid. J. Immunol. 169, 6985–6991.

    CAS  PubMed  Google Scholar 

  • Conner, G.E., Salathe, M., and Forteza, R. (2002). Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am. J. Respir. Crit. Care Med. 166, S57–61.

    Article  PubMed  Google Scholar 

  • Cui, Y., Li, M., Walton, K.D., Sun, K., Hanover, J.A., Furth, P.A., and Hennighausen, L. (2001). The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics 78, 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., Fujita, T., Conzelmann, K.K., Krug, A., and Hopfner, K.P. (2008). The C-terminal regulatory domain is the RNA 5’-triphosphate sensor of RIG-I. Mol. Cell 29, 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Davies, J.R., Svitacheva, N., Lannefors, L., Kornfalt, R., and Carlstedt, I. (1999). Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochem. J. 344 Pt 2, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • De, Y., Chen, Q., Schmidt, A.P., Anderson, G.M., Wang, J.M., Wooters, J., Oppenheim, J.J., and Chertov, O. (2000). LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074.

    Article  Google Scholar 

  • Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  • Dohrman, A., Miyata, S., Gallup, M., Li, J.D., Chapelin, C., Coste, A., Escudier, E., Nadel, J., and Basbaum, C. (1998). Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta 1406, 251–259.

    CAS  PubMed  Google Scholar 

  • Fischer, H. (2009). Mechanisms and function of DUOX in epithelia of the lung. Antioxid Redox Signal. 11, 2453–2465.

    Article  CAS  PubMed  Google Scholar 

  • Flo, T.H., Smith, K.D., Sato, S., Rodriguez, D.J., Holmes, M.A., Strong, R.K., Akira, S., and Aderem, A. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921.

    Article  CAS  PubMed  Google Scholar 

  • Forteza, R., Salathe, M., Miot, F., and Conner, G.E. (2005). Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 32, 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Fredericksen, B.L., and Gale, M., Jr. (2006). West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J. Virol. 80, 2913–2923.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, J.H., and Girardin, S.E. (2005). How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. J. Endotoxin Res. 11, 390–394.

    CAS  PubMed  Google Scholar 

  • Ganz, T. (2004). Antimicrobial polypeptides. J. Leukoc. Biol. 75, 34–38.

    Article  CAS  PubMed  Google Scholar 

  • Geiszt, M., Witta, J., Baffi, J., Lekstrom, K., and Leto, T.L. (2003). Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504.

    CAS  PubMed  Google Scholar 

  • Gensch, E., Gallup, M., Sucher, A., Li, D., Gebremichael, A., Lemjabbar, H., Mengistab, A., Dasari, V., Hotchkiss, J., Harkema, J., et al. (2004). Tobacco smoke control of mucin production in lung cells requires oxygen radicals AP-1 and JNK. J. Biol. Chem. 279, 39085–39093.

    Article  CAS  PubMed  Google Scholar 

  • Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R.A., Diamond, M.S., and Colonna, M. (2006). Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103, 8459–8464.

    Article  CAS  PubMed  Google Scholar 

  • Gray, T., Nettesheim, P., Loftin, C., Koo, J.S., Bonner, J., Peddada, S., and Langenbach, R. (2004). Interleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase- 2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. Mol. Pharmacol. 66, 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Greene, C.M., Carroll, T.P., Smith, S.G., Taggart, C.C., Devaney, J., Griffin, S., O’Neill S.J., and McElvaney, N.G. (2005). TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J. Immunol. 174, 1638–1646.

    CAS  PubMed  Google Scholar 

  • Groneberg, D.A., Eynott, P.R., Oates, T., Lim, S., Wu, R., Carlstedt, I., Nicholson, A.G., and Chung, K.F. (2002). Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung. Respir. Med. 96, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Guillot, L., Medjane, S., Le-Barillec, K., Balloy, V., Danel, C., Chignard, M., and Si-Tahar, M. (2004). Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J. Biol. Chem. 279, 2712–2718.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Chen, L.M., Zeng, H., Gomez, J.A., Plowden, J., Fujita, T., Katz, J.M., Donis, R.O., and Sambhara, S. (2007). NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am. J. Respir. Cell Mol. Biol. 36, 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Ha, U., Lim, J.H., Jono, H., Koga, T., Srivastava, A., Malley, R., Pages, G., Pouyssegur, J., and Li, J.D. (2007). A novel role for IkappaB kinase (IKK) alpha and IKKbeta in ERK-dependent upregulation of MUC5AC mucin transcription by Streptococcus pneumoniae. J. Immunol. 178, 1736–1747.

    CAS  PubMed  Google Scholar 

  • Habjan, M., Andersson, I., Klingstrom, J., Schumann, M., Martin, A., Zimmermann, P., Wagner, V., Pichlmair, A., Schneider, U., Muhlberger, E., et al. (2008). Processing of genome 5’ termini as a strategy of negative-strand RNA viruses to avoid RIG-Idependent interferon induction. PLoS One 3, e2032.

    Article  PubMed  CAS  Google Scholar 

  • Harder, J., Meyer-Hoffert, U., Teran, L.M., Schwichtenberg, L., Bartels, J., Maune, S., and Schroder, J.M. (2000). Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am. J. Respir. Cell Mol. Biol. 22, 714–721.

    CAS  PubMed  Google Scholar 

  • Harper, R.W., Xu, C., Eiserich, J.P., Chen, Y., Kao, C.Y., Thai, P., Setiadi, H., and Wu, R. (2005). Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 579, 4911–4917.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, K., Graham, B.S., Ho, S.B., Adler, K.B., Collins, R.D., Olson, S.J., Zhou, W., Suzutani, T., Jones, P.W., Goleniewska, K., et al. (2004). Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5. Am. J. Respir. Crit. Care Med. 170, 306–312.

    Article  PubMed  Google Scholar 

  • Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  • Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529.

    Article  CAS  PubMed  Google Scholar 

  • Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  CAS  PubMed  Google Scholar 

  • Herr, C., Shaykhiev, R., and Bals, R. (2007). The role of cathelicidin and defensins in pulmonary inflammatory diseases. Exp. Opin. Biol. Ther. 7, 1449–1461.

    Article  CAS  Google Scholar 

  • Hewson, C.A., Haas, J.J., Bartlett, N.W., Message, S.D., Laza-Stanca, V., Kebadze, T., Caramori, G., Zhu, J., Edbrooke, M.R., Stanciu, L.A., et al. (2010). Rhinovirus induces MUC5AC in a human infection model, & in vitro via NF-{kappa}B & EGFR pathways. Eur. Respir. J. (in press).

  • Hogg, J.C., Chu, F., Utokaparch, S., Woods, R., Elliott, W.M., Buzatu, L., Cherniack, R.M., Rogers, R.M., Sciurba, F.C., Coxson, H.O., et al. (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653.

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth, M.A., and Swanson, B.J. (2004). Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60.

    Article  CAS  PubMed  Google Scholar 

  • Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., et al. (2006). 5’-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997.

    Article  PubMed  Google Scholar 

  • Innes, A.L., Woodruff, P.G., Ferrando, R.E., Donnelly, S., Dolganov, G.M., Lazarus, S.C., and Fahy, J.V. (2006). Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction. Chest 130, 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, D., Yamaya, M., Kubo, H., Sasaki, T., Hosoda, M., Numasaki, M., Tomioka, Y., Yasuda, H., Sekizawa, K., Nishimura, H., et al. (2006). Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Respir. Physiol. Neurobiol. 154, 484–499.

    Article  CAS  PubMed  Google Scholar 

  • Jia, H.P., Kline, J.N., Penisten, A., Apicella, M.A., Gioannini, T.L., Weiss, J., and McCray, P.B., Jr. (2004). Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L428–437.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Wang, Y., Kuang, Y., Wang, B., Li, W., Gong, T., Jiang, Z., Yang, D., and Li, M. (2009). Expression of mouse beta-defensin-3 in MDCK cells and its anti-influenza-virus activity. Arch. Virol. 154, 639–647.

    Article  CAS  PubMed  Google Scholar 

  • John, G., Yildirim, A.O., Rubin, B.K., Gruenert, D.C., and Henke, M.O. (2010). TLR-4-mediated innate immunity is reduced in cystic fibrosis airway cells. Am. J. Respir. Cell Mol. Biol. 42, 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Jono, H., Shuto, T., Xu, H., Kai, H., Lim, D.J., Gum, J.R., Jr., Kim, Y.S., Yamaoka, S., Feng, X.H., and Li, J.D. (2002). Transforming growth factor-beta -Smad signaling pathway cooperates with NF-kappa B to mediate nontypeable Haemophilus influenzae-induced MUC2 mucin transcription. J. Biol. Chem. 277, 45547–45557.

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa, O., Frevert, C.W., Lin, S.M., Goodman, R.B., Mongovin, S.M., Wong, V., Ballman, K., Daubeuf, B., Elson, G., and Martin, T.R. (2005). Gene expression of Toll-like receptor-2, Toll-like receptor-4, and MD2 is differentially regulated in rabbits with Escherichia coli pneumonia. Gene 344, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Kang, D.C., Gopalkrishnan, R.V., Wu, Q., Jankowsky, E., Pyle, A.M., and Fisher, P.B. (2002). mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. USA 99, 637–642.

    Article  CAS  PubMed  Google Scholar 

  • Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  • Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.J., Park, Y.D., Moon, U.Y., Kim, J.H., Jeon, J.H., Lee, J.G., Bae, Y.S., and Yoon, J.H. (2008). The role of Nox4 in oxidative stress-induced MUC5AC overexpression in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 39, 598–609.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.J., Ryu, J.H., Kim, C.H., Lim, J.W., Moon, U.Y., Lee, G.H., Lee, J.G., Baek, S.J., and Yoon, J.H. (2009). ECG Suppresses Oxidative Stress-Induced MUC5AC Overexpression by Interaction with EGFR. Am. J. Respir. Cell Mol. Biol. 43, 349–357.

    Article  PubMed  Google Scholar 

  • Kirkham, S., Sheehan, J.K., Knight, D., Richardson, P.S., and Thornton, D.J. (2002). Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem. J. 361, 537–546.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, S., Wieland, C.W., van’ t Veer, C., Takeuchi, O., Akira, S., Florquin, S., and van der Poll, T. (2004). Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J. Immunol. 172, 3132–3138.

    CAS  PubMed  Google Scholar 

  • Kolls, J.K., McCray, P.B., Jr., and Chan, Y.R. (2008). Cytokinemediated regulation of antimicrobial proteins. Nat. Rev. Immunol. 8, 829–835.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, T., Takeuchi, K., and Gotoh, B. (2007). Bovine parainfluenza virus type 3 accessory proteins that suppress beta interferon production. Microbes Infect. 9, 954–962.

    Article  CAS  PubMed  Google Scholar 

  • Lai, Y., and Gallo, R.L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30, 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen, U., Whitsett, J.A., Wert, S.E., Tichelaar, J.W., and Bry, K. (2005). Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am. J. Respir. Cell Mol. Biol. 32, 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Lemjabbar, H., and Basbaum, C. (2002). Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med. 8, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Leto, T.L., and Geiszt, M. (2006). Role of Nox family NADPH oxidases in host defense. Antioxid Redox Signal. 8, 1549–1561.

    Article  CAS  PubMed  Google Scholar 

  • Li, J.D., Dohrman, A.F., Gallup, M., Miyata, S., Gum, J.R., Kim, Y.S., Nadel, J.A., Prince, A., and Basbaum, C.B. (1997). Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. USA 94, 967–972.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Gallup, M., Fan, N., Szymkowski, D.E., and Basbaum, C.B. (1998). Cloning of the amino-terminal and 5’-flanking region of the human MUC5AC mucin gene and transcriptional upregulation by bacterial exoproducts. J. Biol. Chem. 273, 6812–6820.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P.T., Stenger, S., Li, H., Wenzel, L., Tan, B.H., Krutzik, S.R., Ochoa, M.T., Schauber, J., Wu, K., Meinken, C., et al. (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773.

    Article  CAS  PubMed  Google Scholar 

  • Longphre, M., Li, D., Li, J., Matovinovic, E., Gallup, M., Samet, J.M., and Basbaum, C.B. (2000). Lung mucin production is stimulated by the air pollutant residual oil fly ash. Toxicol. Appl. Pharmacol. 162, 86–92.

    Article  CAS  PubMed  Google Scholar 

  • Loo, Y.M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Akira, S., Gill, M.A., Garcia-Sastre, A., Katze, M.G., et al. (2008). Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335–345.

    Article  CAS  PubMed  Google Scholar 

  • Lora, J.M., Zhang, D.M., Liao, S.M., Burwell, T., King, A.M., Barker, P.A., Singh, L., Keaveney, M., Morgenstern, J., Gutierrez-Ramos, J.C., et al. (2005). Tumor necrosis factor-alpha triggers mucus production in airway epithelium through an IkappaB kinase betadependent mechanism. J. Biol. Chem. 280, 36510–36517.

    Article  CAS  PubMed  Google Scholar 

  • MacRedmond, R.E., Greene, C.M., Dorscheid, D.R., McElvaney, N.G., and O’Neill, S.J. (2007). Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respir. Res. 8, 84.

    Article  PubMed  CAS  Google Scholar 

  • Mannino, D.M., Homa, D.M., Akinbami, L.J., Ford, E.S., and Redd, S.C. (2002). Chronic obstructive pulmonary disease surveillance- United States, 1971–2000. Respir. Care 47, 1184–1199.

    PubMed  Google Scholar 

  • McCartney, S.A., Thackray, L.B., Gitlin, L., Gilfillan, S., Virgin, H.W., and Colonna, M. (2008). MDA-5 recognition of a murine norovirus. PLoS Pathog. 4, e1000108.

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397.

    Article  CAS  PubMed  Google Scholar 

  • Mesquita, P., Almeida, R., Van Seuningen, I., and David, L. (2004). Coordinated expression of MUC2 and CDX-2 in mucinous carcinomas of the lung can be explained by the role of CDX-2 as transcriptional regulator of MUC2. Am. J. Surg. Pathol. 28, 1254–1255.

    Article  PubMed  Google Scholar 

  • Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172.

    Article  CAS  PubMed  Google Scholar 

  • Mibayashi, M., Martinez-Sobrido, L., Loo, Y.M., Cardenas, W.B., Gale, M., Jr., and Garcia-Sastre, A. (2007). Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81, 514–524.

    Article  CAS  PubMed  Google Scholar 

  • Moser, C., Weiner, D.J., Lysenko, E., Bals, R., Weiser, J.N., and Wilson, J.M. (2002). beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072.

    Article  CAS  PubMed  Google Scholar 

  • Muir, A., Soong, G., Sokol, S., Reddy, B., Gomez, M.I., Van Heeckeren, A., and Prince, A. (2004). Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 30, 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba, F., Iwabuchi, K., Matsuda, H., Ogawa, H., and Nagaoka, I. (2002). Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int. Immunol. 14, 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Opitz, B., Rejaibi, A., Dauber, B., Eckhard, J., Vinzing, M., Schmeck, B., Hippenstiel, S., Suttorp, N., and Wolff, T. (2007). IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 9, 930–938.

    Article  CAS  PubMed  Google Scholar 

  • Ordonez, C.L., Khashayar, R., Wong, H.H., Ferrando, R., Wu, R., Hyde, D.M., Hotchkiss, J.A., Zhang, Y., Novikov, A., Dolganov, G., et al. (2001). Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am. J. Respir. Crit. Care Med. 163, 517–523.

    CAS  PubMed  Google Scholar 

  • Pastva, A.M., Wright, J.R., and Williams, K.L. (2007). Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc. Am. Thorac. Soc. 4, 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair, A., and Reis e Sousa, C. (2007). Innate recognition of viruses. Immunity 27, 370–383.

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314, 997–1001.

    Article  CAS  PubMed  Google Scholar 

  • Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.

    Article  CAS  PubMed  Google Scholar 

  • Rose, M.C., and Voynow, J.A. (2006). Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245–278.

    Article  CAS  PubMed  Google Scholar 

  • Rothenfusser, S., Goutagny, N., DiPerna, G., Gong, M., Monks, B.G., Schoenemeyer, A., Yamamoto, M., Akira, S., and Fitzgerald, K.A. (2005). The RNA helicase Lgp2 inhibits TLRindependent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 175, 5260–5268.

    CAS  PubMed  Google Scholar 

  • Schulz, B.L., Sloane, A.J., Robinson, L.J., Sebastian, L.T., Glanville, A.R., Song, Y., Verkman, A.S., Harry, J.L., Packer, N.H., and Karlsson, N.G. (2005). Mucin glycosylation changes in cystic fibrosis lung disease are not manifest in submucosal gland secretions. Biochem. J. 387, 911–919.

    Article  CAS  PubMed  Google Scholar 

  • Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C.J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406–17409.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer, C., Machen, T.E., Illek, B., and Fischer, H. (2004). NADPH oxidase-dependent acid production in airway epithelial cells. J. Biol. Chem. 279, 36454–36461.

    Article  CAS  PubMed  Google Scholar 

  • Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682.

    Article  CAS  PubMed  Google Scholar 

  • Shao, M.X., and Nadel, J.A. (2005). Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. USA 102, 767–772.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P.K., Jia, H.P., Wiles, K., Hesselberth, J., Liu, L., Conway, B.A., Greenberg, E.P., Valore, E.V., Welsh, M.J., Ganz, T., et al. (1998). Production of beta-defensins by human airway epithelia. Proc. Natl. Acad. Sci. USA 95, 14961–14966.

    Article  CAS  PubMed  Google Scholar 

  • Skerrett, S.J., Liggitt, H.D., Hajjar, A.M., and Wilson, C.B. (2004). Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J. Immunol. 172, 3377–3381.

    CAS  PubMed  Google Scholar 

  • Skerrett, S.J., Wilson, C.B., Liggitt, H.D., and Hajjar, A.M. (2007). Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L312–322.

    Article  CAS  PubMed  Google Scholar 

  • Song, K.S., Lee, W.J., Chung, K.C., Koo, J.S., Yang, E.J., Choi, J.Y., and Yoon, J.H. (2003). Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J. Biol. Chem. 278, 23243–23250.

    Article  CAS  PubMed  Google Scholar 

  • Song, K.S., Choi, Y.H., Kim, J.M., Lee, H., Lee, T.J., and Yoon, J.H. (2009a). Suppression of prostaglandin E2-induced MUC5AC overproduction by RGS4 in the airway. Am. J. Physiol. Lung Cell Mol. Physiol. 296, L684–692.

    Article  CAS  PubMed  Google Scholar 

  • Song, K.S., Kim, H.J., Kim, K., Lee, J.G., and Yoon, J.H. (2009b). Regulator of G-protein signaling 4 suppresses LPS-induced MUC5AC overproduction in the airway. Am. J. Respir. Cell Mol. Biol. 41, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Soong, G., Reddy, B., Sokol, S., Adamo, R., and Prince, A. (2004). TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest. 113, 1482–1489.

    CAS  PubMed  Google Scholar 

  • Starner, T.D., Barker, C.K., Jia, H.P., Kang, Y., and McCray, P.B., Jr. (2003). CCL20 is an inducible product of human airway epithelia with innate immune properties. Am. J. Respir. Cell Mol. Biol. 29, 627–633.

    Article  CAS  PubMed  Google Scholar 

  • Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 29, 428–440.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, O., Hoshino, K., and Akira, S. (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396.

    CAS  PubMed  Google Scholar 

  • Takeyama, K., Dabbagh, K., Jeong Shim, J., Dao-Pick, T., Ueki, I.F., and Nadel, J.A. (2000). Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J. Immunol. 164, 1546–1552.

    CAS  PubMed  Google Scholar 

  • Thai, P., Loukoianov, A., Wachi, S., and Wu, R. (2008). Regulation of airway mucin gene expression. Annu. Rev. Physiol. 70, 405–429.

    Article  CAS  PubMed  Google Scholar 

  • Thornton, D.J., Rousseau, K., and McGuckin, M.A. (2008). Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70, 459–486.

    Article  CAS  PubMed  Google Scholar 

  • Tyner, J.W., Kim, E.Y., Ide, K., Pelletier, M.R., Roswit, W.T., Morton, J.D., Battaile, J.T., Patel, A.C., Patterson, G.A., Castro, M., et al. (2006). Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J. Clin. Invest. 116, 309–321.

    Article  CAS  PubMed  Google Scholar 

  • Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y., and Barber, G.N. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444–6455.

    CAS  PubMed  Google Scholar 

  • Voynow, J.A., Young, L.R., Wang, Y., Horger, T., Rose, M.C., and Fischer, B.M. (1999). Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am. J. Physiol. 276, L835–843.

    CAS  PubMed  Google Scholar 

  • Walter, M.J., Morton, J.D., Kajiwara, N., Agapov, E., and Holtzman, M.J. (2002). Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J. Clin. Invest. 110, 165–175.

    CAS  PubMed  Google Scholar 

  • Wan, H., Kaestner, K.H., Ang, S.L., Ikegami, M., Finkelman, F.D., Stahlman, M.T., Fulkerson, P.C., Rothenberg, M.E., and Whitsett, J.A. (2004). Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131, 953–964.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Lim, D.J., Han, J., Kim, Y.S., Basbaum, C.B., and Li, J.D. (2002). Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway. J. Biol. Chem. 277, 949–957.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Nagarkar, D.R., Bowman, E.R., Schneider, D., Gosangi, B., Lei, J., Zhao, Y., McHenry, C.L., Burgens, R.V., Miller, D.J., et al. (2009). Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J. Immunol. 183, 6989–6997.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Jiang, Y., Gong, T., Cui, X., Li, W., Feng, Y., Wang, B., Jiang, Z., and Li, M. (2010). High-level expression and novel antifungal activity of mouse beta defensin-1 mature peptide in Escherichia coli. Appl. Biochem. Biotechnol. 160, 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Weber, F., Kochs, G., and Haller, O. (2004). Inverse interference: how viruses fight the interferon system. Viral Immunol. 17, 498–515.

    Article  CAS  PubMed  Google Scholar 

  • Wesley, U.V., Bove, P.F., Hristova, M., McCarthy, S., and van der Vliet, A. (2007). Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J. Biol. Chem. 282, 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  • Wijkstrom-Frei, C., El-Chemaly, S., Ali-Rachedi, R., Gerson, C., Cobas, M.A., Forteza, R., Salathe, M., and Conner, G.E. (2003). Lactoperoxidase and human airway host defense. Am. J. Respir. Cell Mol. Biol. 29, 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Williams, S.E., Brown, T.I., Roghanian, A., and Sallenave, J.M. (2006). SLPI and elafin: one glove, many fingers. Clin. Sci. 110, 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T.Y., Karp, C.L., and Donaldson, D.D. (1998). Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261.

    Article  CAS  PubMed  Google Scholar 

  • Willumsen, N.J., and Boucher, R.C. (1989). Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia. Am. J. Physiol. 256, C1054–1063.

    CAS  PubMed  Google Scholar 

  • Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19, 727–740.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M., Jr., Akira, S., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858.

    CAS  PubMed  Google Scholar 

  • Young, H.W., Williams, O.W., Chandra, D., Bellinghausen, L.K., Perez, G., Suarez, A., Tuvim, M.J., Roy, M.G., Alexander, S.N., Moghaddam, S.J., et al. (2007). Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5’ elements. Am. J. Respir. Cell Mol. Biol. 37, 273–290.

    Article  CAS  PubMed  Google Scholar 

  • Yuan-Chen Wu, D., Wu, R., Reddy, S.P., Lee, Y.C., and Chang, M.M. (2007). Distinctive epidermal growth factor receptor/e xtracellular regulated kinase-independent and -dependent signaling pathways in the induction of airway mucin 5B and mucin 5AC expression by phorbol 12-myristate 13-acetate. Am. J. Pathol. 170, 20–32.

    Article  PubMed  CAS  Google Scholar 

  • Zhen, G., Park, S.W., Nguyenvu, L.T., Rodriguez, M.W., Barbeau, R., Paquet, A.C., and Erle, D.J. (2007). IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am. J. Respir. Cell Mol. Biol. 36, 244–253.

    Article  CAS  PubMed  Google Scholar 

  • Zuhdi Alimam, M., Piazza, F.M., Selby, D.M., Letwin, N., Huang, L., and Rose, M.C. (2000). Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am. J. Respir. Cell Mol. Biol. 22, 253–260.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Heon Yoon.

About this article

Cite this article

Ryu, JH., Kim, CH. & Yoon, JH. Innate immune responses of the airway epithelium. Mol Cells 30, 173–183 (2010). https://doi.org/10.1007/s10059-010-0146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0146-4

Keywords

Navigation