Skip to main content
Log in

Characterization of the residues of αX I-domain and ICAM-1 mediating their interactions

  • Published:
Molecules and Cells

Abstract

Integrin αXβ2 performs a significant role in leukocyte functions including phagocytosis and migration, and binds to a variety of ligands, including fibrinogen, iC3b, and ICAM-1. A particular domain of the α subunit of the integrin — the αX I-domain — is a ligand binding site, and the interaction of the αX I-domain and ICAM-1 on the endothelium is an important step in leukocyte extravasation. In order to elucidate the structural aspects of this interaction, we defined the moieties of the αX and ICAM-1 relevant to their interaction in this study. It was determined that the ICAM-1 binding sites of the αX I-domain were located in the α3α4, βDα5, and βFα7 loops at the top surface of the I-domain. The residues Q202, K242, K243, E298 and D299 on these loops were crucial for the recognition of ICAM-1. Among these residues, K242 and K243 on the βDα5 loop were found to be the most salient, thereby suggesting an ionic interaction between these proteins. Domain 3 of ICAM-1 was identified as a primary binding site for the αX I-domain. Two regions of domain 3 (D229QRLNPTV and E254DEGTQRL) perform critical functions in the binding of the αX I-domain. Especially, the residue E254DEG, is most important with regard to the αX I-domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnaout, M.A. (2002). Integrin structure: new twists and turns in dynamic cell adhesion. Immunol. Rev. 186, 125–140.

    Article  CAS  PubMed  Google Scholar 

  • Arnaout, M.A. Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381–410.

    Article  CAS  PubMed  Google Scholar 

  • Bilsland, C.A., Diamond, M.S., and Springer, T.A. (1994). The leukocyte integrin p150,95 (CD11c/CD18). as a receptor for iC3b. Activation by a heterologous β subunit and localization of a ligand recognition site to the I-domain. J. Immunol. 152, 4582–4589.

    CAS  PubMed  Google Scholar 

  • Bullard, D.C., Hu, X., Adams, J., Schoeb, T.R., and Barnum, S.R. (2007). p150/95 (CD11c/CD18). expression is required for the development of experimental auto immune encephalomyelitis. Immunol. Infec. Diseas. 170, 2001–2008.

    CAS  Google Scholar 

  • Choi, J., Leyton, L., and Nham, S.-U. (2005). Characterization of αX I-domain binding to Thy-1. Biochem. Biophys. Res. Commun. 331, 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Diamond, M.S., Staunton, D.E., Marlin, S.D., and Springer, T.A. (1991). Binding of the integrin Mac-1(CD11b/CD18). to the third Ig-like domain of ICAM-1 (CD54). and its regulation by glycosylation. Cell 65, 961–971.

    Article  CAS  PubMed  Google Scholar 

  • Frick, C., Odermatt, A., Zen, K., Mandell, K.J., Edens, H., Portmann, R., Mazzucchelli, R., Jaye, D.L., and Parkos, C.A. (2005). Interaction of ICAM-1 with β2-integrin CD11c/CD18: characterization of a peptide ligand that mimics a putative binding site on domain D4 of ICAM-1. Eur. J. Immunol. 35, 3610–3621.

    Article  CAS  PubMed  Google Scholar 

  • Gang, J., Choi, J., Lee, J., and Nham, S.-U. (2007). Identification of critical residues for plasminogen binding by the αX I-domain. Mol. Cells 24, 240–246.

    CAS  PubMed  Google Scholar 

  • Harris, E.S., McIntyre, T.M., Prescott, S.M., and Zimmerman, G.A. (2000). The leukocyte integrins. J. Biol. Chem. 275, 23409–23412.

    Article  CAS  PubMed  Google Scholar 

  • Ihanus, E., Uotila, L.M., Toivanen, A., Varis, M., and Gahmberg, C.G. (2007). Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4. Blood 109, 802–810.

    Article  CAS  PubMed  Google Scholar 

  • Languino, L. R., Plescia, J., Duperray, A., Brian, A.A., Plow, E.F., Geltosky, J.E., and Altieri, D.C. (1993). Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1 dependent pathway. Cell 73, 1423–1434.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, C., and Wolf, S. (2009). ICAM-1 signaling in endothelial cells. Pharm. Report. 61, 22–32.

    CAS  Google Scholar 

  • Lee, J.H., Choi, J., and Nham, S.-U. (2007). Critical residues of alpha X I-domain recognizing fibrinogen central domain. Biochem. Biophys. Res. Commun. 355, 1058–1063.

    Article  CAS  PubMed  Google Scholar 

  • Loike, J.D., Sodeik, B., Cao, L., Leucona, S., Weitz, J.I., Detmers, P.A., Wright, S.D., and Silverstein, S.C. (1991). CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88, 1044–1048.

    Article  CAS  PubMed  Google Scholar 

  • Luo, B.-H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647.

    Article  CAS  PubMed  Google Scholar 

  • Metlay, J.P., Witmer-Pack, M.D., Agger, R., Crowley, M.T., Lawless, D., and Steinman, R.M. (1990). The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J. Exp. Med. 171, 1753–1771.

    Article  CAS  PubMed  Google Scholar 

  • Meunier, L., Bohjanen, K., Voorhees, J.J., and Cooper, K.D. (1994). Retinoic acid upregulates human Langerhans cell antigen presentation and surface expression of HLA-DR and CD11c, a β2 integrin critically involved in T-cell activation. J. Invest. Dermatol. 103, 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Myones, B.L., Dalzell, J.G., Hogg, N., and Ross, G.D. (1988). Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4). activity resembling CR3. J. Clin. Invest. 82, 640–651.

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimeraa visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  • Plow, E.F., Haas, T.A., Zhang, L., Loftus, J., and Smith, J.W. (2000). Ligand binding to integrin. J. Biol. Chem. 275, 21785–21788.

    Article  CAS  PubMed  Google Scholar 

  • Sadhu, C., Ting, H.J., Lipsky, B., Hensley, K., Garcia-Martinez, L.F., Simon, S.I., and Staunton, D.E. (2007). CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity. J. Leuk. Biol. 81, 395–1403.

    Article  Google Scholar 

  • Schneider, P. (2000). Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins. Methods Enzymol. 322, 325–345.

    Article  CAS  PubMed  Google Scholar 

  • Shortman, K., and Liu, Y.J. (2002). Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Stacker, S.A., and Springer, T.A. (1991). Leukocyte integrin p150,95 (CD11c/CD18). functions as an adhesion molecule binding to a counter-receptor on stimulated endothelium. J. Immunol. 146, 648–655.

    CAS  PubMed  Google Scholar 

  • Stanley, P., and Hogg, N. (1998). The I-domain of integrin LFA-1 interacts with ICAM-1 domain 1 at residue Glu-34 but not Gln-73. J. Biol. Chem. 273, 3358–3362.

    Article  CAS  PubMed  Google Scholar 

  • Staunton, D.E., Dustin, M.L., Erickson, H.P., and Springer, T.A. (1990). The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61, 243–254.

    Article  CAS  PubMed  Google Scholar 

  • te Velde, A.A., Keizer, G.D., and Figdor, C.G. (1987). Differential function of LFA-1 family molecules (CD11 and CD18). in adhesion of human monocytes to melanoma and endothelial cells. Immunology 61, 261–267.

    Google Scholar 

  • van Buul, J.D., Kanters, E., and Hordijk, P.L. (2007). Endothelial signaling by Ig-like cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 7, 1870–1876.

    Article  Google Scholar 

  • Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T.A. (2003). Structure and allosteric regulation of the αXβ2 integrin I-domain. Proc. Natl. Acad. Sci. USA 100, 1873–1878.

    Article  CAS  PubMed  Google Scholar 

  • Vorup-Jensen, T., Carman, C.V., Shimaoka, M., Schuck, P., Svitel, J., and Springer T.A. (2005). Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin. Proc. Natl. Acad. Sci. USA 102. 1614–1619.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Jun, C.-D., Liu, J.-H., Zhang, R., Joachimiak, A., Springer, T.A., and Wang, J.-H. (2004). Structural basis for dimerization of ICAM-1 on the cell surface. Mol. Cell 14, 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Zang, Q., and Springer, T.A. (2001). Amino acid residues in the PSI-domain and cysteine-rich repeats of the integrin β2 subunit that restrain activation of the integrin αXβ2. J. Biol. Chem. 276, 6922–6929.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Uk Nham.

About this article

Cite this article

Choi, J., Choi, J. & Nham, SU. Characterization of the residues of αX I-domain and ICAM-1 mediating their interactions. Mol Cells 30, 227–234 (2010). https://doi.org/10.1007/s10059-010-0111-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0111-2

Keywords

Navigation