Skip to main content

Advertisement

Log in

Cell death and stress signaling in glycogen storage disease type I

  • Minireview
  • Published:
Molecules and Cells

Abstract

Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-α (G6Pase-α) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abo, A., Boyhan, A., West, I., Thrasher, A.J., and Segal, A.W. (1992). Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J. Biol. Chem. 267, 16767–16770.

    PubMed  CAS  Google Scholar 

  • Akahoshi, T., Nagaoka, T., Namai, R., Sekiyama, N., and Kondo, H. (1997). Prevention of neutrophil apoptosis by monosodium urate crystals. Rheumatol. Int. 16, 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Akgul, C., Moulding, D.A., and Edwards, S.W. (2001). Molecular control of neutrophil apoptosis. FEBS Lett. 487, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B.M. (1984). Oxidants from phagocytes: agents of defense- and destruction. Blood 64, 959–966.

    PubMed  CAS  Google Scholar 

  • Babior, B.M. (1999). NADPH oxidase: an update. Blood 93, 1464–1476.

    PubMed  CAS  Google Scholar 

  • Bae, Y.S., Lee, J.H., Choi, S.H., Kim, S., Almazan, F., Witztum, J.L., and Miller, Y.I. (2009). Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res. 104, 210–218.

    Article  PubMed  CAS  Google Scholar 

  • Bedard, K., and Krause, K.H., (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313.

    Article  PubMed  CAS  Google Scholar 

  • Borthwick, N.J., Wickremasinghe, R.G., Lewin, J., Fairbanks, L.D., and Bofill, M. (1999). Activation-associated necrosis in human immunodeficiency virus infection, J. Infect. Dis. 179, 352–360.

    Article  CAS  Google Scholar 

  • Chakravarthi, S., Jessop, C.E., and Bulleid, N.J., (2006). The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 7, 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.T., Cornblath, M., and Sidbury, J.B. (1984). Cornstarch therapy in type I glycogen-storage disease. N. Engl. J. Med. 310, 171–175.

    PubMed  CAS  Google Scholar 

  • Chen, Y.T., Scheinman, J.I., Park, H.K., Coleman, R.A., and Roe, C.R. (1990). Amelioration ofproximal renal tubular dysfunction in type I glycogen storage disease with dietary therapy. N. Engl. J. Med. 323, 590–593.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.T., Bazarre, C.H., Lee, M.M., Sidbury, J.B., and Coleman, R.A. (1993). Type I glycogen storage disease: nine years ofmanagement with cornstarch. Eur. J. Pediatr. 152, S56–S59.

    Article  PubMed  Google Scholar 

  • Chen, L.-Y., Lin, B., Pan, C.-J., Hiraiwa, H., and Chou, J.Y. (2000). Structural requirements for the stability and microsomal transport activity of the human glucose-6-phosphate transporter. J. Biol. Chem. 275, 34280–34286.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.T. (2001). Glycogen storage diseases. In The Metabolic and Molecular Bases of Inherited Disease, C.R., Scriver, A.L., Beaudet, W.S., Sly, D., Valle, B., Childs, K.W., Kinzler, and B., Vogelstein, eds. (New York: McGraw-Hill), pp.1521–1551.

    Google Scholar 

  • Chen, L.-Y., Pan, C.-J., Shieh, J.-J., and Chou, J.Y. (2002). Structure- fun ction analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib. Hum. Mol. Genet. 11, 3199–3207.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, Y.Y., Kim, S.Y., Yiu, W.H., Pan, C.J., Jun, H.S., Ruef, R.A., Lee, E.J., Westphal, H., Mansfield, B.C., and Chou, J.Y. (2007). Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-β. J. Clin. Invest. 117, 784–793.

    Article  PubMed  CAS  Google Scholar 

  • Chitnis, D., Dickerson, C., Munster, A.M., and Winchurch, R.A. (1996). Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J. Leukoc. Biol. 59, 835–839.

    PubMed  CAS  Google Scholar 

  • Chou, J.Y., and Mansfield, B.C. (1999). Molecular genetics of type 1 glycogen storage diseases. Trend Endocrinol. Metab. 10, 104–113.

    Article  CAS  Google Scholar 

  • Chou, J.Y., and Mansfield, B.C. (2003). Glucose-6-phosphate transporter: the key to glycogen storage disease type Ib. In Membrane Transporter Diseases, S., Broer, and C.A., Wagner, eds. (New York: Kluwer Academic/Plenum Publishers), pp. 191–205.

    Google Scholar 

  • Chou, J.Y., Matern, D., Mansfield, B.C., and Chen, Y.-T. (2002). Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr. Mol. Med. 2, 121–143.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M.C., Figg, N., Maguire, J.J., Davenport, A.P., Goddard, M., Littlewood, T.D., and Bennett, M.R. (2006). Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M.C., Littlewood, T.D., Figg, N., Maguire, J.J., Davenport, A.P., Goddard, M., and Bennett, M.R. (2008). Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ. Res. 102, 1529–1538.

    Article  PubMed  CAS  Google Scholar 

  • Coultas, L., and Strasser, A. (2003). The role of the Bcl-2 protein family in cancer. Semin. Cancer Biol. 13, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Coxon, A., Rieu, P., Barkalow, F.J., Askari S., Sharpe A.H., von Adrian, U.H., Arnaout, M.A. and Mayadas, T.N. (1996). A novel role for the b2 integrin CD11b/ CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653–666.

    Article  PubMed  Google Scholar 

  • Daublin, G., Schwahn, B., and Wendel, U. (2002). Type I glycogen storage disease: favorable outcome on a strict management regimen avoiding increased lactate production during childhood and adolescence. Eur. J. Pediatr. 161, S40–S45.

    PubMed  Google Scholar 

  • Davis, R.L., Shrimpton, A.E., Holohan, P.D., Bradshaw, C., Feiglin, D., Collins, G.H., Sonderegger, P., Kinter, J., Becker, L.M., Lacbawan, F., et al. (1999). Familial dementia caused by polymerization of mutant neuroserpin. Nature 401, 376–379.

    PubMed  CAS  Google Scholar 

  • Deveraux, Q.L., and Reed, J.C. (1999). IAP family proteins - suppressors of apoptosis. Genes Dev. 13, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Dieckgraefe, B.K., Korzenik, J.R., Husain, A., and Dieruf, L. (2002). Association of glycogen storage disease 1b and Crohn disease: results of a North American survey. Eur. J. Pediatr. 161, S88–S92.

    PubMed  Google Scholar 

  • Edinger, A.L., and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • El-Benna, J., Dang, P.M., and Gougerot-Pocidalo, M.A. (2008). Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 30, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Ertel, W., Keel, M., Infanger, M., Ungethum, U., Steckholzer, U., and Trentz, O. (1998). Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through up-regulation of protein-tyrosine phosphorylation. J. Trauma. 44, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Fadeel, B., and Orrenius, S. (2005). Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258, 479–517.

    Article  PubMed  CAS  Google Scholar 

  • Forman, H.J., and Torres, M., (2001). Redox signaling in macrophages. Mol. Aspects Med. 22, 189–216.

    Article  PubMed  CAS  Google Scholar 

  • Fruehauf, J.P., and Meyskens, F.L. Jr., (2007). Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789–794.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Z., Tian, Y., Wang, J., Yin, Q., Wu, H., Li, Y.M., and Jiang, X. (2007). A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J. Biol. Chem. 282, 30718–30727.

    Article  PubMed  CAS  Google Scholar 

  • Garlichs, C.D., Eskafi, S., Cicha, I., Schmeisser, A., Walzog, B., Raaz, D., Stumpf, C., Yilmaz, A., Bremer, J., Ludwig, J., et al. (2004). Delay of neutrophil apoptosis in acute coronary syndromes. J. Leukoc. Biol. 75, 828–835.

    Article  PubMed  CAS  Google Scholar 

  • Garty, B., Douglas, S., and Danon, Y. L. (1996). Immune deficiency in glycogen storage disease type 1b. Isr. J. Med. Sci. 32, 1276–1281.

    PubMed  CAS  Google Scholar 

  • Gitzelmann, R., and Bosshard, N.U. (1993). Defective neutrophil and monocyte functions in glycogen storage disease type Ib: a literature review. Eur. J. Pediatr. 152, S33–S38

    Article  PubMed  Google Scholar 

  • Görlach, A., Klappa, P., and Kietzmann, T. (2006). The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391–1418.

    Article  PubMed  Google Scholar 

  • Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 294, 671–674.

    Article  CAS  Google Scholar 

  • Greene, H.L., Slonim, AE., O’Neill, J.A., and Burr, I.M. (1976). Continuous nocturnal intragastric feeding for management of type 1 glycogen-storage disease. N. Engl. J. Med. 294, 423–425.

    PubMed  CAS  Google Scholar 

  • Hallett, M.B., and Lloyds, D.L. (1995). Neutrophil priming: the cellular signals that say ‘amber’ but not ‘egreen’. Immunol. Today 16, 264–268.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, M.B., Kettle, A.J., and Winterbourn, C.C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–3017.

    PubMed  CAS  Google Scholar 

  • Haynes, C.M., Titus, E.A., and Cooper, A.A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 15, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T., et al. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432–438.

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R., Srinivasula, S.M., Datta, P., Madesh, M., Wassell, R., Zhang, Z., Cheong, N., Nejmeh, J., Fernandes-Alnemri, T., Hoshino, S., et al. (2003). The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. J. Biol. Chem. 278, 38699–38706.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, K.N., Walker, E.A., and Stewart, P.M. (2005). Minireview: hexose-6-phosphate dehydrogenase and redox control of 11 β-hydroxysteroid dehydrogenase type 1 activity. Endocrinology 146, 2539–2543.

    Article  PubMed  CAS  Google Scholar 

  • Hiraiwa, H., Pan, C.-J., Lin, B., Moses, S.W., and Chou, J.Y. (1999). Inactivation of the glucose-6-phosphate transporter causes glycogen storage disease type 1b. J. Biol. Chem. 274, 5532–5536.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., and Brumell, J.H. (2009). NADPH oxidases contribute to autophagy regulation. Autophagy 5, 887–889.

    PubMed  CAS  Google Scholar 

  • Hultqvist, M., Olsson, L.M., Gelderman, K.A., and Holmdahl, R. (2009). The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Ina, K., Kusugami, K., Hosokawa, T., Imada, A., Shimizu, T., Yamaguchi, T., Ohsuga, M., Kyokane, K., Sakai, T., Nishio, Y., et al. (1999). Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in Inflammatory Bowel disease. J. Gastroenterol. Hepatol. 14, 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, M., Sato, E.F., Nishikawa, M., Park, A.M., Kira, Y., Imada, I. and Utsumi, K. (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem. 10, 2495–505.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, M.F., Watson, R.W., Parodo, J., Evans, D., Foster, D., Steinberg, M., Rotstein, O.D., and Marshall, J.C. (1997). Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch. Surg. 132, 1263–1270.

    PubMed  CAS  Google Scholar 

  • Joshi-Barve, S., Barve, S.S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M., Hote, P., and McClain, C.J. (2007). Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 46, 823–830.

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki, M., Karim, M.R., Carpi, A., and Miotto, G. (2006). Nutrient control of macroautophagy in mammalian cells. Mol. Aspects Med. 27, 426–443.

    Article  PubMed  CAS  Google Scholar 

  • Kalamidas, S.A., and Kotoulas, O.B. (1999). The degradation of glycogen in the lysosomes of newborn rat hepatocytes: glycogen-, maltose- and isomaltose-hydrolyzing acid alpha glucosidase activities in liver. Histol. Histopathol. 14, 23–30.

    PubMed  CAS  Google Scholar 

  • Kaplowitz, N. (2000). Mechanisms of liver cell injury. J. Hepatol. 32, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, Y., Iwai, K., Yachie, A., Ohta, K., Konno, A., Seki, H., Miyawaki, T., and Taniguchi, N. (1997). Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89, 1748–1753.

    PubMed  CAS  Google Scholar 

  • Kaufman, R.J., Scheuner, D., Schröder, M., Shen, X., Lee, K., Liu, C.Y., and Arnold, S.M. (2002). The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 3, 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Keel, M., Ungethum, U., Steckholzer, U., Niederer, E., Hartung, T., Trentz, O., and Ertel, W. (1997). Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90, 3356–3363.

    PubMed  CAS  Google Scholar 

  • Kelekar, A., and Thompson, C.B. (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell. Biol. 8, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick, L., Garty, B.Z., Lundquist, K.F., Hunter, K., Stanley, C.A., Baker, L., Douglas, S.D., and Korchak, H.M. (1990). Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b. J. Clin. Invest. 86, 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., and Klionsky, D.J. (2000). Autophagy, cytoplasm-tovacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69, 303–342.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Nguyen, A.D., Gao, J.L., Murphy, P.M., Mansfield, B.C., and Chou, J.Y. (2006). Bone marrow-derived cells require a functional glucose 6-phosphate transporter for normal myeloid functions. J. Biol. Chem. 281, 28794–28801

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Chen, L.Y., Yiu, W.H., Weinstein, D.A., and Chou, J.Y. (2007). Neutrophilia and elevated serum cytokines are implicated in glycogen storage disease type Ia. FEBS Lett. 581, 3833–3838.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Jun, H.S., Mead, P.A., Mansfield, B.C., and Chou, J.Y. (2008a). Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 111, 5704–5711.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Weinstein, D.A., Starost, M.F., Mansfield, B.C., and Chou, J.Y. (2008b). Necrotic foci, elevated chemokines and infiltrating neutrophils in the liver of glycogen storage disease type Ia. J. Hepatol. 48, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Klionsky, D.J. (2004). Autophagy. (Georgetown, TX: Landes Biosciences), pp. 1–303.

    Google Scholar 

  • Korchak, H.M., Garty, B.Z., Stanley, C.A., Baker, L., Douglas, S.D., and Kilpatrick. L. (1993). Impairment of calcium mobilization in phagocytic cells in glycogen storage disease type 1b. Eur. J. Pediatr. 152, S39–S43.

    Article  PubMed  CAS  Google Scholar 

  • Kotoulas, O.B., and Phillips, M.J. (1971). Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am. J. Pathol. 63, 1–7.

    PubMed  CAS  Google Scholar 

  • Kotoulas, O.B., Kalamidas, S.A., Miles, P., and Hann, A.C., (2003). An electron microscopic and biochemical study of the effects of propranolol on the glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol. 18, 811–818.

    PubMed  CAS  Google Scholar 

  • Kotoulas, O.B., Kalamidas, S.A., and Kondomerkos, D.J., (2004). Glycogen autophagy. Microsc. Res. Tech. 64, 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Kotoulas, O.B., Kalamidas, S.A., and Kondomerkos, D.J. (2006). Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers, T.W., Maianski, N.A., Tool, A.T., Smit, G.P., Rake, J.P., Roos, D., and Visser, G. (2003). Apoptotic neutrophils in the circulation of patients with glycogen storage disease type 1b (GSD1b). Blood 101, 5021–5024.

    Article  PubMed  CAS  Google Scholar 

  • Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036.

    Article  PubMed  CAS  Google Scholar 

  • Lambeth, J.D., Krause, K.H., and Clark, R.A. (2008). NOX enzymes as novel targets for drug development. Semin Immunopathol. 30, 339–363.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A.S. (2001). The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A.S. (2005). The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Lei, K.-J., Shelly, L.L., Pan, C.-J., Sidbury, J.B., and Chou, J.Y. (1993). Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580–583.

    Article  PubMed  CAS  Google Scholar 

  • Lei, K.-J., Pan, C.-J., Shelly, L.L., Liu, J.-L., and Chou, J.Y. (1994). Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J. Clin. Invest. 93, 1994–1999.

    Article  PubMed  CAS  Google Scholar 

  • Lei, K.-J., Chen, Y.-T., Chen, H., Wong, L.-J.C., Liu, J.-L., McConkie-Rosell, A., Van Hove, J.L.K., Ou, H.C.-Y., Yeh, N.J., Pan, L.Y., et al. (1995a). Genetic basis of glycogen storage disease type 1a: prevalent mutations at the glucose-6- phosphatase locus. Am. J. Hum. Genet. 57, 766–771.

    PubMed  CAS  Google Scholar 

  • Lei, K-J., Shelly, L.L., Lin, B., Sidbury, J.B., Chen, Y.-T., Nordlie, R.C., and Chou, J.Y. (1995b). Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease type 1a and 1aSP but not 1b and 1c. J. Clin. Invest. 95, 234–240.

    Article  PubMed  CAS  Google Scholar 

  • Leuzzi, R., Bánhegyi, G., Kardon, T., Marcolongo, P., Capecchi, P.L., Burger, H.J., Benedetti, A., and Fulceri, R. (2003). Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b. Blood 101, 381–387.

    Article  CAS  Google Scholar 

  • Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27–42.

    Article  PubMed  CAS  Google Scholar 

  • Lin, B., Annabi, B., Hiraiwa, H., Pan, C.J., and Chou, J.Y. (1998). Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents. J. Biol. Chem. 273, 31656–31660.

    Article  PubMed  CAS  Google Scholar 

  • Lindholm, D., Wootz, H., and Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Lipson, K.L., Fonseca, S.G., and Urano, F. (2006). Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr. Mol. Med. 6, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist-Gustafsson, H., and Bengtsson, T. (1999). Activation of the granule pool of the NADPH oxidase accelerates apoptosis in human neutrophils. J. Leukoc. Biol. 65, 196–204.

    PubMed  CAS  Google Scholar 

  • Luo, H.R., and Loison, F. (2008). Constitutive neutrophil apoptosis: mechanisms and regulation. Am. J. Hematol. 83, 288–295.

    Article  PubMed  CAS  Google Scholar 

  • Maianski, N.A., Roos, D., and Kuijpers, T.W. (2003). Tumor necrosis factor alpha induces a caspase-independent death pathway in human neutrophils. Blood 101, 1987–1995.

    Article  PubMed  CAS  Google Scholar 

  • Maianski, N.A., Maianski, A.N., Kuijpers, T.W., and Roos, D. (2004a). Apoptosis of neutrophils. Acta Haematol. 111, 56–66.

    Article  PubMed  CAS  Google Scholar 

  • Maianski, N.A., Geissler, J., Srinivasula, S.M., Alnemri, E.S., Roos, D., and Kuijpers, T.W. (2004b). Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death. Differ. 11, 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Malhi, H., Gores, G.J., and Lemasters, J.J. (2006). Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43, S31–44

    Article  PubMed  CAS  Google Scholar 

  • Mandl, J., Mészáros, T., Bánhegyi, G., Hunyady, L., and Csala, M. (2009). Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends Endocrinol. Metab. 20, 194–201.

    Article  PubMed  CAS  Google Scholar 

  • McCullough, A.J. (2006). Pathophysiology of nonalcoholic steatohepatitis. J. Clin. Gastroenterol 40, S17–S29.

    PubMed  CAS  Google Scholar 

  • Melley, D.D., Evans, T.W., and Quinlan, G.J. (2005). Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome. Clin. Sci. 108, 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Michelsen, K.S., Doherty, T.M., Shah, P.K., and Arditi, M. (2004). TLR signaling: an emerging bridge from innate immunity to atherogenesis. J. Immunol. 173, 5901–5907.

    PubMed  CAS  Google Scholar 

  • Miller, L.K. (1999). An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima, N. Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M.S., Lentsch, A.B., Miyasaka, M., and Ward, P.A. (1998). Cytokine and adhesion molecule requirements for neutrophil recruitment during glycogen-induced peritonitis. Inflamm. Res. 47, 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, B.M., O’Neill, A.J., Adrain, C., Watson, R.W., and Martin, S.J. (2003). The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome C. J. Exp. Med. 197, 625–632.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S., and Golstein, P. (1995). The Fas death factor. Science 267, 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-b. Nature 403, 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer, D.D., and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Nicotera, P., Leist, M., and Manzo, L. (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Nordlie, R.C., and Sukalski, K.A. (1985). In The Enzymes of Biological Membranes, A.N., Martonosi, ed. 2nd ed. (New York: Plenum Press), pp. 349–398.

    Google Scholar 

  • Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, J., and Ohsumi, Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582–31586.

    Article  PubMed  CAS  Google Scholar 

  • Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143–183.

    Article  PubMed  CAS  Google Scholar 

  • Ottonello, L., Cutolo, M., Frumento, G., Arduino, N., Bertolotto, M., Mancini, M., Sottofattori, E., and Dallegri, F. (2002). Synovial fluid from patients with rheumatoid arthritis inhibits neutrophil apoptosis: role of adenosine and proinflammatory cytokines. Rheumatology 41, 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  • Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Görgün, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 306 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Pan, C.-J., Lei, K.-J., Chen, H., Ward, J.M., and Chou, J.Y. (1998). Ontogency of the murine glucose-6-phosphatase system. Arch. Biochem. Biophys. 358, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.S., Jung, H.Y., Park, E.Y., Kim, J., Lee, W.J., and Bae, Y.S. (2004). Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. 173, 3589–3593.

    PubMed  CAS  Google Scholar 

  • Peng, S.L. (2006). Neutrophil apoptosis in autoimmunity. J. Mol. Med. 84, 122–125.

    Article  PubMed  Google Scholar 

  • Perskvist, N., Long, M., Stendahl, O., and Zheng, L. (2002). Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/BclxL via an oxygen-dependent pathway. J. Immunol. 168, 6358–6365.

    PubMed  CAS  Google Scholar 

  • Proskuryakov, S.Y., Konoplyannikov, A.G., and Gabai, V.L. (2003). Necrosis: a specific form of programmed cell death? Exp. Cell. Res. 283, 1–16.

    Article  CAS  Google Scholar 

  • Quinn, M.T., Mullen, M.L., and Jesaitis, A.J. (1992). Human neutrophil cytochrome b contains multiple hemes. Evidence for heme associated with both subunits J. Biol. Chem. 267, 7303–7309.

    PubMed  CAS  Google Scholar 

  • Rake, J.P., Visser, G., Labrune, P., Leonard, J.V., Ullrich, K., and Smit, G.P. (2002). Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease type I (ESGSD I). Eur. J. Pediatr. 161, S20–S34.

    PubMed  CAS  Google Scholar 

  • Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O’Kane, C.J., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Rotrosen, D., Yeung, C.L., Leto, T.L., Malech, H.L., and Kwong, C.H. (1992). Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256, 1459–1462.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, A., and Kaarniranta, K. (2009). Regulation of the aging process by autophagy. Trends Mol. Med. 15, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan, M.A., Dillon, C.P., Tait, S.W., Moshiach. S., Dorsey, F., Connell, S., Komatsu, M., Tanaka, K., Cleveland, J.L., Withoff, S., et al. (2007). Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257.

    Article  PubMed  CAS  Google Scholar 

  • Savill, J., and Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature 407, 784–788.

    Article  PubMed  CAS  Google Scholar 

  • Savill, J.S., Wyllie, A.H., Henson, J.E., Walport, M.J., Henson, P.M., and Haslett, C. (1989). Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, F.Q., and Buettner, G.R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212.

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Toellner, D., Wang, K.Q., Webb, P.R., Wong, S.H., Craddock, R., Assi, L.K., Salmon, M., and Lord, J.M. (2004). Early events in spontaneous neutrophil apoptosis. Biochem. Soc. Trans. 32, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, D., and Munz, C. (2007). Innate and adaptive immunity through autophagy. Immunity 27, 11–21

    Article  PubMed  CAS  Google Scholar 

  • Schroder, M., and Kaufman, R.J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789.

    Article  PubMed  CAS  Google Scholar 

  • Schworer, C.M., Shiffer, K.A., and Mortimore, GE. (1981). Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem. 256, 7652–7658.

    PubMed  CAS  Google Scholar 

  • Scott, F.L., Denault, J.B., Riedl, S.J., Shin, H., Renatus, M., and Salvesen, G.S. (2005). XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 24, 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Segal, A.W. (2005). How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, F.R., Kelher, M.R., Moore, E.E., McLaughlin, N.J., Banerjee, A., and Silliman, C.C. (2005). Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol. 78, 1025–1042.

    Article  PubMed  CAS  Google Scholar 

  • Shintani, T., and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990–995.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, R.P., Pouysségur, J., and Pastan, I. (1977). Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74, 3840–3844.

    Article  PubMed  CAS  Google Scholar 

  • Squier, M.K., Sehnert, A.J., and Cohen, J.J. (1995). Apoptosis in leukocytes. J. Leukoc. Biol. 57, 2–10.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621.

    Article  PubMed  CAS  Google Scholar 

  • Syntichaki, P., and Tavernarakis, N. (2002). Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 3, 604–609.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, Y., Nakamoto, Y., Mukaida, N., and Kaneko, S. (2007). Intrahepatic interleukin-8 production during disease progression of chronic hepatitis C. Cancer Lett. 251, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto, N., Terasawa, M., Nakamura, M., Kegai, D., Aoshima, N., Kobayashi, Y., and Nagata, K. (2007). Involvement of KC, MIP-2, and MCP-1 in leukocyte infiltration following injection of necrotic cells into the peritoneal cavity. Biochem. Biophys. Res. Commun. 361, 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Tenev, T., Zachariou, A., Wilson, R., Ditzel, M., and Meier, P. (2005). IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat. Cell Biol. 7, 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Virgin, H.W., and Levine, B. (2009). Autophagy genes in immunity. Nat. Immunol. 10, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Visser, G., Rake, J.P, Fernandes, J., Labrune, P., Leonard, J.V., Moses, S., Ullrich, K., and Smit, G.P. (2000). Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European study on glycogen storage disease type I. J. Pediatr. 137, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Walker, N.I., Harmon, B.V., Gobe, G.C., and Kerr, J.F. (1988). Patterns of cell death. Methods Achiev. Exp. Pathol. 13, 18–54.

    PubMed  CAS  Google Scholar 

  • Walker, E.A., Ahmed, A., Lavery, G.G., Tomlinson, J.W., Kim, S.Y., Cooper, M.S., Ride, J.P., Hughes, B.A., Shackleton, C.H., McKiernan, P., et al. (2007). 11beta-hydroxysteroid dehydrogenase type 1 regulation by intracellular glucose 6-phosphate provides evidence for a novel link between glucose metabolism and hypothalamo-pituitary-adrenal axis function. J. Biol. Chem. 282, 27030–27036.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.H., Redmond, H.P., Watson, R.W., Duggan, S., McCarthy, J., Barry, M., and Bouchier-Hayes, D. (1996). Mechanisms involved in the induction of human endothelial cell necrosis. Cell. Immunol. 168, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Webb, P.R., Wang, K.Q., Scheel-Toellner, D., Pongracz, J., Salmon, M., and Lord, J.M. (2000). Regulation of neutrophil apoptosis: A role for protein kinase C and phosphatidylinositol-3-kinase. Apoptosis 5, 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Weisiger, R.A., and Fridovich, I. (1973). Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793–4796.

    PubMed  CAS  Google Scholar 

  • Wu, G., Chai, J., Suber, T.L., Wu, J.W., Du, C., Wang, X., and Shi, Y. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations Nat. Cell Biol. 9, 1102–1109.

    CAS  Google Scholar 

  • Yamamoto, A., Taniuchi, S., Tsuji, S., Hasui, M., and Kobayashi, Y. (2002). Role of reactive oxygen species in neutrophil apoptosis following ingestion of heat-killed Staphylococcus aureus. Clin. Exp. Immunol. 129, 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Ishibashi, Y., Nagaoka, I., Kasuya, K., Masuda, K., Warabi, H., and Shiokawa, Y. (1982). Studies of glycogen-induced inflammation of mice. Dynamics of inflammatory responses and influence of antiinflammatory drugs and protease inhibitors. Inflammation 6, 87–101.

    Article  PubMed  CAS  Google Scholar 

  • Yasui, K., and Baba, A. (2006). Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res. 55, 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Zhang, L., Hwang, P., Kinzler, K.W., and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, U., and Groscurth, P. (2004). Morphological features of cell death. News Physiol. Sci. 19, 124–128.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Youn Kim.

About this article

Cite this article

Kim, S.Y., Bae, Y.S. Cell death and stress signaling in glycogen storage disease type I. Mol Cells 28, 139–148 (2009). https://doi.org/10.1007/s10059-009-0126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0126-8

Keywords

Navigation